27 April 2022: Past and present in Xieng Khouang

After American planes had finished their bomb run, a six-year old girl joined others in escaping the cave in the hills of Xieng Khouang where they’d been hiding. But as she and the other children played, one plane returned and dropped one last bomb.

Inside the cave at the Plain of Jars Site 1. The hole in the ceiling of the cave is artificial to let out smoke and let in light. This cave and many like it in Xieng Khouang were used as places of refuge during the Indochina War.

A piece of shrapnel hit the girl in the right leg. Her grandmother, who’d also been outside, was killed outright. Her father carried the girl on his back for 25 kilometres to the cave where a medical team could be found.

That six-year old girl grew up with one damaged leg. She could not labour in the fields like her parents and siblings, nor could she weave. Instead she opened a small store at the junction of three roads in Phonsavan, the province’s capital, selling beer and cigarettes, school exercise books and biscuits, and soap and toothpaste.

Now, 54 years later, her daughter Sakhone Bounthala runs the store and the small pharmacy she herself opened next door.

‘I grew up working in my mother’s shop. It was the last thing I wanted to do when I grew up, so I studied pharmacy. And yet here I am.’


Plain of Jars Site 1.

Xieng Khouang is a province about 200 kilometres north of the Laos capital, Vientiane. For Westerners it is best known  for the Plain of Jars, a megalithic archaeological location of great importance which in 2019 was made a UNESCO World Heritage Site.

The Plain of Jars is set among rolling hills at the end of the Annamite Range, Indochina’s long mountainous spine. The thousands of stone jars that give the place its name were built during Southeast Asia’s iron age, between 500 BC and 500 CE. No one knows who made the jars, although it seems likely they were related to the Hmong population now living in the province, and no one really knows what happened to their civilisation.


Sakhone doesn’t just run the pharmacy and general store. With her husband David Deweppe she also operates a bed and breakfast in Phonsavan called PuKyo – Lao for Green Mountain. While David, a Belgian who found his true love and true home in Laos, looks after the guest house, Sakhone takes time from the two stores to take guests on guided tours to the Plain of Jars and other nearby sites.

The PuKyo B&B in Phonsavan, Xieng Khouang’s capital.

The Covid pandemic hasn’t been kind to any country’s tourism industry, but developing countries like Laos have been hit particularly hard. Recently, however, borders are opening up and the flow of tourists is now a steady trickle.

AJ and I were part of a small group of friends that stayed at PuKyo for a brief three days, the first time the guest house had been filled for over two years. During our short visit there was the definite sense that life in Phonsavan was returning to something like normal: the roads were busy with traffic, shops were open, people were frequenting restaurants and cafes and promenading on the walkway around the town’s reservoir.


Bomb casings at the Plain of Jars museum.

For the nine year from 1964 to 1973, Laos suffered on average a bombing mission every eight minutes, 24 hours a day. The USA dropped more ordnance on Laos than it did on Germany and Japan during WWII. For the size of its population, Laos is the most bombed country on Earth. Up to 30% of those bombs failed to detonate, and still litter the countryside.

Xieng Khouang was the second most bombed province in Laos. Unexploded ordinance (UXO) contaminates 25% of its villages. Between 1964 and 2008, there have been 50,000 casualties of UXO, and 20,000 of those casualties have occurred  since the Second Indochina War ended in 1974. It’s estimated that over 80 million bomblets (from cluster bombs) remain undetonated.


Not all the jars are the same size or shape. These elongated jars can be found at Site 2.

In the 1930s a French archaeologist, Madeleine Colani investigated the Plain of Jars. There are 17 sites in total, scattered over the province, and only the main one, Site 1, is actually located on a plain. The other sites are located on hills or ridges.

Some of the jars have trees growing out of them.

Colani thought Site 1 marked the centre of the civilisation that built the jars, and from the bones, ash and beads she found thought the jars were built to hold cremated remains. Burials were also found around the jars, containing tools, pots, knives and jewelry, possibly because family members belonging to whomever was cremated were interred around them.

After Colani, the next major investigation was well after the war, during the 1990s, followed by a Lao-Australian dig that lasted from 2016-2020. The results of these later expeditions seemed to confirm Colani’s original hypothesis about the purpose of the jars.


One of the heroes of Laos is Kommaly Chanthavong, a woman who learned the art of silk weaving from her mother when she was five years old.

Weaver at work at the Mulberries Organic Silk Farm.

In 1976 she used what little money she had to buy looms and employed war-displaced women to operate them. At first known as the Phontong Weavers, they eventually became better known as the Phontong Handicraft Cooperative, a network of Lao artisans that now spans 35 villages and connecting 450 artisans.

Impressed by her success, in the 1990s the Lao government gave the cooperative 42 hectares of land just outside Phonsavan for use as a silk farm. But there was one catch. Like the rest of the province, the land had been heavily bombed and was littered with UXO. The cooperative itself removed the bombs and then set about planting mulberry trees. Those 42 hectares of land now makes up the Mulberries Organic Silk Farm.

All the silk is dyed with colours made from locally sourced leaves, berries, bark and roots.

As with the PuKyo guest house, we were among the first tourists to visit the farm in more than two years. During that time they had continued their work, growing trees and raising silkworms, then collecting, spinning, dyeing and weaving the silk they got from the animals’ cocoons. With the silk they make extraordinarily beautiful clothing and accessories such as bags and scarves.

Kommaly Chanthavong travelled from village to village throughout the country, encouraging young people to become involved in the industry, and the Mulberries Organic Silk Farm has played an important part in training more than two thousand farmers and weavers from five provinces, helping to create over three thousand jobs.


One of the bomb craters that pockmark the Plain of Jars.

Because Site 1 at the Plain of Jars offers sweeping views of the surrounding area it became a prime target of bombers during the Second Indochina War. Ancient jars were blown apart or completely obliterated. Even today, when wandering around the site, tourists run the risk of falling into bomb craters and trenches.

It’s a terrible irony that a place used to cremate and bury the deceased became a killing field two thousand years later. The descendants of those who made the jars have paid a heavy toll in dead and wounded for the Second Indochina War, a toll many of them still pay when they till their farms, or when children play in the fields, or when they simply walk along the hills, the ridges and valleys of Xieng Khouang.


The walkway around Phonsavan’s reservoir.

The people of the province – and its landscape – have been scarred by war, but while the past is something they cannot forget they’re not allowing it to shape their future.

AJ and I will definitely return to the PuKyo in the near future, not only to treat ourselves to Sakhone and David’s hospitality once more, but to visit the gentle rolling plains and hills with their megalithic stone jars, and to revisit the Mulberries Organic Silk Farm, and to spend more time with Xieng Khouang’s gentle, enterprising and resilient inhabitants.

(All photos: Simon Brown.)

For those interested in visiting Xieng Khouang, PuKyo B&B can be found here on Facebook.

10 March 2022: ‘Us’ Part 6 – Kith and kin

Hobbits and their ancestors

One of the great palaeoanthropological bombshells of the last generation was the discovery of Homo floresiensis on the Indonesian island of Flores. For years scientists debated what ancestor this new and somewhat diminutive hominin – dubbed the ‘Hobbit’ by the media – had come from, or indeed if it should even be included in our genus.

Homo floresiensis reconstruction. Courtesy of Creative Commons. This image created by ATOR.

While now generally accepted as a member of our broader tribe, its origins are still fiercely argued, many insisting it’s nothing more than H. erectus that’s undergone insular dwarfism. But I think a 2017 paper written by Colin Groves, Debbie Argue, Michael Lee and William Jungers, convincingly demonstrates that H. floresiensis is not derived from H. erectus (or is a diseased example of H. sapiens), but rather from a much earlier hominim such as H. habilis or a sister species.[i]

A second paper, published in 2020[ii], backs up this hypothesis, and concludes with this statement:

‘ … something which on account of our inadequate current taxonomic framework we have to call “early Homo” differentiated in Africa, possibly as early as 2.8 (mya) … Subsequently, one or more members of this group reached the Mediterranean fringe and spread Out of Africa at 2.5 Ma. After successfully expanding over Asia, at least one of those hominins … gave rise to new species that reached the Caucasus by around 1.8 (mya), and thence Europe by ca. 0.9 (mya) … (the) eastward expansion (or occupation) in Asia of small-bodied and archaically-proportioned hominins continued, possibly in multiple waves; and, by ca. 0.8 (mya), representatives of this group had penetrated as far as insular southeast Asia, where H. floresiensis ultimately emerged … ’

Indeed, some scientists considered this possibility as early as 2005. A report about the brain of H. floresiensis published in Science in that year[iii] concludes with these lines: ‘Although it is possible that H. floresiensis represented an endemic island dwarf that, over time, became subject to unusual allometric constraints, an alternative hypothesis is that H. erectus and H. floresiensis may have shared a common ancestor that was an unknown small-bodied and small-brained hominin.’

Homo habilis. Courtesy of Creative Commons. Photographer unknown.

I think an increasing weight of evidence strongly suggests that the first major exodus of our genus from Africa was carried out by H. habilis or one or more of her sisters. Furthermore, I think it’s possible that these closely related species then gave rise to H. erectus, H. pekinensis, H. luzonensis[iv] and H. floresiensis in Eurasia, while those remaining in Africa gave rise to H. ergaster. This does not preclude the possibility, or perhaps probability, of any or all of these species crossbreeding if they ran across each other.

But what of H. sapiens, our own species? As with H. ergaster and H. erectus, the evidence here is convoluted, confusing and often contradictory.


For those, like Colin Groves, who think H. ergaster is a species in its own right, the line of descent works something like the following.

Homo heidelbergensis. Courtesy of Creative Commons. This image created by ATOR.

About 600,000 years ago, H. ergaster, either directly or through an intermediary species called H. rhodesiensis, gave rise to H. heidelbergensis. This species was our size physically, and his brain capacity was well inside the standards of Anatomically Modern Humans (AMH). Following the great tradition of hominin migration, something that seems as ingrained in our genus as bipedalism, some members of this new species moved to Europe[v]. About 400,000 years ago, they gave rise to H. neanderthalensis. In a case of ‘well, we’ll show you’, those who stayed behind in Africa gave rise to H. sapiens at least 300,000 years ago, and possibly as long as 350,000 years ago.[vi]

I can’t stress this enough. Homo sapiens are Africans. It is where our archaic ancestors and AMH first appear[vii]. (Let me also stress that this story, as complicated as it gets from now on, does not resurrect the Multiregional Model for our evolution, where H. erectus gave rise to H. sapiens across its whole range at the same time, from Africa to Asia. This is an old theory, now largely discredited by the extensive fossil and DNA evidence that our species first evolved in Africa.[viii])

What happened next has been slowly and painstakingly uncovered by palaeoanthropologists doing field work throughout Africa and Eurasia, and by the outstanding work performed at the Max Planck Institute’s Department of Evolutionary Genetics, headed up by Svante Pääbo, into hominin DNA.[ix]

What the DNA evidence strongly suggests is that H. sapiens successfully left Africa between 70,000 and 100,000 years ago. (Although this wasn’t the first migration into Eurasia by our species. It is usually held that previous attempts left no trace in the DNA of AMH outside of Africa, but see these earlier posts, here and here.)

Female Homo neanderthalensis. Courtesy of PLOS ONE.

Members of the most recent migration interbred with H. neanderthalensis, probably in what is now the Middle East, and later with the Denisovans, another possible descendant of H. heidelbergensis, deeper in Eurasia[x]. To this day, the average ex-African H. sapiens carries between 1%-2% of the Neanderthal genome; but it is not the same one or two percent: we overlap. Overall, we carry up to 40% of the Neanderthal genome in our own genes. But the story gets more complex still: the genome of people from Oceania, such as Papuan New Guineans and Australian Aborigines, can have between 5-6% Denisovan DNA[xi]; indeed, recent research suggests that Ayta Magbukon Negritos in the Philippines have Denisovan ancestry 30-40% higher than either of these two groups.

The Natural History Museum of London’s Professor Chris Stringer says, ‘It is now clear there was a lot more interbreeding between ancient species, including early Homo sapiens and others, and that there was a lot more movement of populations both in the distant past – and relatively recently.’[xii]

Homo sapiens (Oase 2) reconstructed from bones 37,000-42,000 years old discovered in the cave of Peştera cu Oase in Romania. Around 7.3% of his DNA is from H. neanderthalensis, from an ancestor 4-6 generations back. Courtesy of Creative Commons. Photo: Daniela Hitzemann.

Talking about recent research, in June last year Chinese scientists announced that a cranium first discovered in China almost a century ago, is a new species of Homo with a brain easily the equal of any AMH in size and carried inside a skull more massive than ours. Those making the announcement have named the new species H. longi (‘Dragon man’, and just as Denisovans are sometimes described as a sister species to Neanderthal, so H. longi is being claimed as a sister species to H. sapiens[xiii]).

As Lee Berger, from the University of Witwatersrand and the discoverer of Australopithecus sediba and H. naledi, has suggested, perhaps the different paths of human evolution are not best thought of as branches spreading from a single tree trunk, or even a messy, many-twigged bush, but rather a braided stream[xiv] with tributaries constantly running across each other before separating, rejoining and separating once more.

The Waimakariri River in New Zealand is braided along almost its entire length. A good metaphor for hominin interbreeding? Courtesy of Creative Commons. Photo: Greg O’Beirne.

We, Anatomically Modern Humans, are the result of all this evolution. We are nothing more than a mongrel species.

What a splendid, exhilarating thought.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 4 – Using your noggin

‘Us’ Part 5 – Feet and socks

[i] https://www.sciencedirect.com/science/article/abs/pii/S0047248417300866

And this from the Australian Museum: ‘Most scientists that accept H. floresiensis as a legitimate species now think its ancestor may have come from an early African dispersal by a primitive Homo species similar in appearance to H. habilis or the Dmanisi hominins. This means that it shared a common ancestor with Asian H. erectus but was not descended from it. Cladistic analysis supports the lack of a close relationship with H. erectus.

[ii] https://onlinelibrary.wiley.com/doi/abs/10.1002/evan.21863

[iii] Falk, Dean, et al. ‘The Brain of LB1, Homo floresiensis’. Science, 308, 242 (2005).

[iv] https://www.nature.com/articles/s41586-019-1067-9

[v] The first H. heidelbergensis fossils were found near Heidelberg in 1907.

[vi] Although this paper suggests the split between our two species might be found much further back … up to 800,000 kya or more!

[vii] Recent research from scientists at Australia’s Garvan Institute of Medical Research reveals that southern Africa is home to the oldest evidence for AMH: ‘… to contemporary populations that represent the earliest branch of human genetic phylogeny.’ The date they arrive at is 200,000 years ago.

As well, a report in the February issue of Science describes how thousands of genome sequences were collected from modern and ancient humans to create a family tree. In the words of the report’s first author, Anthony Wilder Wohns, ‘ … we definitely see overwhelming evidence of the Out-of-Africa event … ‘

[viii] See Stringer, C. & Andrews, P. The Complete World of Human Evolution. London, 2011. P 140 ff for a discussion of the two main theories for the evolution of Home sapiens: ‘Multiregional’ and ‘Out of Africa’.

[ix] And now, besides DNA, they are using protein analysis to identify ancient hominins, most recently the first Denisovan found outside of the Denisova Cave in Siberia … on the Tibetan Plateau of all places! See https://www.nature.com/articles/s41586-019-1139-x, 16 May 2019.

[x] Very recently, H. sapiens remains were discovered in the Grotte Mandrin rock shelter in the Rhône Valley in France that date back 54,000 years ago, pushing back our species arrival in Europe by at leat 10,000 years from previous estimates.

[xi] Please watch this fascinating talk Svante Pääbo gave at the University of California in 2018 after receiving the Nierenberg Award for Science in the Public Interest. It goes into all of this in much more detail. As Pääbo points out in the talk, the DNA evidence indicates humans ‘have always mixed’.

[xii] https://www.theguardian.com/science/2017/nov/19/human-evolution-dna-revolution-mapping-genome

[xiii] See here and here.

[xiv] See Berger talk about this towards the end of this Nova documentary, the Dawn of Humanity.

28 February 2022: ‘Us’ Part 4 – Using your noggin

It’s not how big it is, but what you do with it

Forgive the pun, but for decades it seemed a no-brainer that the chief qualification to be considered human was the size of your brain. Obviously, it had to be a of a certain respectable capacity, never quite defined, but a degree or two larger than a chimpanzee’s organ was a good start. There was some embarrassment when it was determined that the average brain capacity of Homo neanderthalensis was larger than our own[i], but that misgiving aside it was assumed that if not a directly comparative intelligence was a prerequisite, then certainly something within shooting distance.

One mistaken assumption here is between brain size and intelligence, something made very clear in recent years by the discovery of the stone tool-making H. floresiensis (with a brain the size of a chimpanzee). Recent work done on corvids, for example, suggests that ravens and crows possess a Theory of Mind[ii] – the capacity to imagine that another crow might have its own thoughts – which in turn suggested a reasonably developed sense of self-awareness, an emergent property traditionally associated with intelligence[iii].

Homo heidelbergensis had a brain around 1200 cc, well within the range of H. sapiens. Photo: Simon Brown.

Another mistaken assumption is that our larger brain size is extraordinary among our cousins, but average brain size has not increased dramatically in total capacity since H. heidelbergensis, a species that first saw light of day 600,000 years ago.[iv]

Indeed, Homo species sit comfortably on the line that matches a generic primate’s brain size to its body size. In other words, if you’re a primate, the bigger you are the bigger your brain gets. (This isn’t peculiar to primates, of course, and applies to many mammalian groups, eg rodents, elephants and aardvarks, but primates do have larger brains than mammals of similar body mass).[v]

Interestingly, there are three exceptions to this general rule, all three of which are closer to us genetically than any other primates: the orangutan, the chimpanzee and the gorilla. The orangutan falls just below the curve, the chimpanzee falls a little further, and the gorilla furthest of all. Extensive studies with chimpanzees and gorillas, however, show that both species are intelligent and self-aware enough to have developed a Theory of Mind.

Demonstrably, brain size is not irretrievably married to a set physical size, just as brain size is not irretrievably married to a set level of intelligence.

I know that you know that I know …

It does seem self-awareness, or sentience, is an emergent property of intelligence.[vi] In other words, as an animal increases in intelligence, at some point it will become aware of its own existence. This is more than simply being able to experience pleasure or pain, but the ability to experience life subjectively.

Objects found with the remains of H. floresiensis strongly suggests they made stone-age level weapons and tools.[vii] Obviously, such complex toolmaking suggests an active intelligence capable of learning new skills and – as importantly – passing those skills on to the next generation. This in turn suggests H. floresiensis possessed a language; if not a spoken language such as ours, with a huge vocabulary and complex rules of grammar, then at least some way to transmit a limited amount of information effectively and efficiently.

Evidence also exists that H. floresiensis hunted and scavenged animals such as the dwarf stegodon, a kind of elephant. To be clear, a dwarf elephant could still grow to more than two metres in height. For something the size of H. floresiensis to hunt stegodon strongly suggests they hunted in groups, which in turn strongly suggests their language was something more than a series of grunts.

With H. naledi, we are on somewhat less firm ground. Although they were larger-brained hominins than H. floresiensis, the remains of at least 15 individuals from the Rising Star Cave in South Africa were discovered without any tools or evidence of tool making. However, the species possessed a hand not dissimilar to our own, and would probably have been capable of tool-making. It is hard to imagine a hominin species living in Africa in this period, between 236,000 and 335,000 years ago, and not picking up the skill from one of the other hominin species occupying southern Africa at the same time (including, quite possibly, our own).

The Rising Star Cave in South Africa, where the fossils of several Homo naledi were discovered in the Dinaledi Chamber. H. naledi almost certainly would have needed fire – and a great deal of determination – to find their way to the chamber from its entrance. Courtesy of Creative Commons.

Furthermore, palaeoanthropologist Lee Berger, who led the expedition to recover the H. naledi remains from the Rising Star Cave, believes bodies were intentionally and repeatedly deposited there. This implies two things: first, ritual behaviour on the part of the species, and second, that they were capable of making fire, since the chamber the bones were discovered in is at the end of a long, dark, dangerous and narrow route.[viii]

I may not know much about art, but …

In his influential work on human development, The Ascent of Man, Jacob Bronowski wrote, ‘Man is not the most majestic of creatures. Long before the mammals even, the dinosaurs were far more splendid. But he has what no other animal possesses, a jig-saw of faculties which alone, over three thousand million years of life, make him creative. Every animal leaves traces of what it was; man alone leaves traces of what he created.’[ix]

Whether or not Bronowski used the term man to mean, specifically, H. sapiens, or more broadly to mean humans in general, we know that our cousins left behind more than traces of what they created. We have hundreds of stone tools, the tailings and debris of stone-tool manufacturing, and even examples of art.

I would suggest this equates to culture.

But what if there are no physical signs of culture, does it mean culture does not exist? It is often fallacious to argue that absence of evidence is not evidence of absence, but in cultural endeavours such as language or dance, there can be no evidence before the invention of writing and art.

Vervet on the lookout for predators. Photo: Simon Brown.

Simple language can be identified in many primates. Vervet monkeys, for example, have distinct calls for each of their four main predators: pythons, baboons, leopards and eagles. But we will probably never know which human species was the first to communicate with what we would describe as a complex language, one capable of conveying abstract thought. Vervet monkeys may be able to tell their fellows that a leopard is approaching, but they cannot say the leopard is hiding behind that bush or over that hill, let alone discuss the rights and wrongs of predation.

We see culture operating among our more social hominid cousins, the chimps and gorillas. Long-term field studies suggest, for example, that cultural variation exists among different chimpanzee groups, including differences in grooming, courtship and tool usage.[x] It is the ‘combined repertoire’ of chimp behaviours that is significant, demonstrating a range of cultural behaviours, a diversity that once was attributed only to our own species.

It is with the application and development of tool usage that the first signs of a distinct ‘human’ culture are found in palaeoanthropology. Whereas chimps and some bird species, like humans, use tools made from plants to gather food or built shelter, humans are the first animals to make stone tools, improving on the original material through knapping. Later, humans combined stone with other material, such as wooden handles, to improve their effectiveness; in other words using tools to make better tools. Indeed, the making of stone tools was once considered the boundary marker between members of Homo and earlier genera. Since then, the boundary for stone-tool making has been pushed well beyond those species traditionally grouped under our own genus.

Oldowan stone age tools. Courtesy of Wikimedia Commons. Photographer: Didier Descouens.

The oldest crafted stone tools found so far are from Lomekwi in Kenya, dating back 3.3 mya[xi]. First discovered in 2011, they were probably made by a species belonging to either the Australopithecus or the Kenyanthropus genera. The tools were found in an area where Kenyanthropus platyops fossils had been found earlier.

But we have to wait more than 700,000 years before there is clear evidence of stone-tool making on a large scale, something we’ll cover in detail in a later post.

Eventually some hominins were not simply making stone tools: ‘The people who made the hand axes clearly had a specific shape in mind, and often went far beyond a purely utilitarian form in the care with which they produced them.’[xii] This is an example of humans crafting tools for aesthetic appeal, not just knapping to produce a sharp edge or a convenient grip.

Earliest example of art was created by Homo erectus 500,000 years ago. Courtesy of Creative Commons. Photographer unknown.

It is with H. erectus we find the first real example of an attempt at making what we would now call ‘art’. In 2014, scientists from Netherland’s Leiden University announced the discovery of a sea shell that had been engraved with a zigzag pattern 500,000 years ago, something identified by ANU scientist Dr Stephen Munro (who did his PhD under Colin Groves!). The shell was originally collected with others at the end of the 19th century by Eugène Dubois – the discoverer of H. erectus in Java – but had not been closely examined since the 1930s. The scientists demonstrated that not only was the engraving not the result of natural forces, but that the pattern was made by ‘a strong and skillful tool-maker’[xiii]. The new date pushed back the first evidence for art by 400,000 years.

With language we’re on much shakier ground. Research suggests the physiological requirements for language exist in at least some monkeys. The stumbling block seems to arise in the way the brain is wired[xiv].

Nonetheless, as noted above with vervet monkeys, a language with a basic vocabulary exists among many primate species. It has even been shown that different species of monkey may understand some of each other’s vocabulary[xv]. Some species have even developed a basic grammar[xvi].

Extensive work has been done on language among the great apes, both in the wild and under controlled conditions. For example, the remarkable success scientists have had teaching American Sign Language to Washoe, a chimpanzee, and Koko, a lowland gorilla, demonstrate their capacity to learn quite complex vocabulary, often using it to express emotions such as sadness.

Koko, a western lowland gorilla, with her pet cat All Ball. Courtesy of Creative Commons. Photographer unknown.

But even the most optimistic view of these experiments shows that non-human great apes never demonstrate a level of intelligence found in a three-year old human child. No chimpanzee or gorilla, for example, has ever used their acquired vocabulary to ask a question.[xvii]

There is genetic evidence to suggest that the development of the capacity for language accelerated in humans after we split from the chimpanzees some seven to eight million years ago[xviii], but precisely when humans started speaking in a way that we would describe as ‘human’ is unknown; it may never be known. As with so many things in evolution, the development of a complex language capable of expressing abstract thoughts almost certainly occurred along a spectrum.

Between them, language and craft handed humans a huge advantage in the evolutionary stakes. Making stone tools, for example, minimised our weaknesses, knives and hammers allowing us to make up for a lack of sharp claws and fangs. Later, bows and throwing spears made up for our lack of speed in the chase.

Language allowed us to magnify our strengths, especially the ability to learn new things and pass that learning on to succeeding generations.

Language, and culture generally, seems to be something we share with other members of our genus, and indeed, as they are presently classified, earlier genera.

In the next post we’ll talk about bipedalism and one of the most controversial of hominin species – H. ergaster.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 5 – Feet and socks

‘Us’ Part 6 – Kith and kin

[i] Specifically, larger on average than the modern human brain, although the brains of archaic H. sapiens were in fact comparable to H. neanderthalensis. The following excerpt is from here.

‘To measure fossil brain volume, anthropologists have traditionally filled skulls with beads or seeds, and dumped the contents into a graduated cylinder (a precise measuring cup). They’ve also submerged molds of skulls into water, measuring the volume displaced. Today CT (computed tomography) scanning methods offer more accurate (and less-messy) measurements, but much of the data in textbooks and other references was collected the old fashioned way.

‘Based on these values, we can confidently say fossil Neanderthals and modern humans from the same time period had similar brain sizes. Twenty-three Neanderthal skulls, dating between 40,000 and 130,000 years ago, had endocranial volumes between 1172 to 1740 cm3. A sample of 60 Stone Age Homo sapiens ranged from 1090 to 1775 cm3.’

[ii] https://www.nature.com/articles/ncomms10506

[iii] And there is now evidence that some birds, eg the Australian magpie, can demonstrate altruism. See here.

[iv] Modern H. sapiens have brains ranging between 1030cc-1620cc; judging from what fossil skulls we have, the H. heidelbergensis brain averaged around 1250cc. See https://australian.museum/learn/science/human-evolution/homo-heidelbergensis/

[v] For a great explanation of how all this works, check out The Human Advantage by Suzana Herculano-Houzel. It’s a great read! See https://mitpress.mit.edu/books/human-advantage

[vi] For example, see https://www.frontiersin.org/articles/10.3389/fnins.2020.548071/full and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304239/

[vii] http://www.nature.com/nature/journal/v532/n7599/full/nature17179.html

[viii] https://elifesciences.org/articles/24234

[ix] Bronowski, J. The Ascent of Man, London, 1976 (BBC Edition), p 42

[x] https://www.nature.com/articles/21415

[xi] https://www.nature.com/articles/nature14464

[xii] Stringer, C. & Andrews, P. The Complete World of Human Evolution. London, 2011. P 209.

[xiii] http://www.news.leiden.edu/news-2014/the-story-behind-the-discovery-that-turned-archaeology-on-its-head.html

[xiv] http://www.sciencemag.org/news/2016/12/why-monkeys-can-t-talk-and-what-they-would-sound-if-they-could

[xv] http://rspb.royalsocietypublishing.org/content/282/1807/20150265

[xvi] http://www.pbs.org/wnet/nature/clever-monkeys-monkeys-and-language/3948/

[xvii] Some scientists argue that Koko’s language skills were a result of ‘operant conditioning’, whereas others state she was indeed capable of simple questions. See Wikipedia entry here for more information and references.

[xviii] https://www.nature.com/articles/nature01025

18 February 2022: ‘Us’ Part 1 – Out of Africa

It’s us and us, not us and them

This and the following five posts will be about Us. Not Uncle Sam or Ultra Sound or Ultimate Spas. Not you and me. But all of Us. Every single human alive today and every single human who has existed in the past. And by every human I mean every member of the genus Homo, and every member of the genera Australopithecus, Kenyanthropus and Paranthropus, a lineage that stretches back nearly five million years in the past and is still going strong today.

I considered another title for this series of posts – ‘Mongrel’ – because Homo sapiens are mongrels. I don’t mean in the way an Australian might call you a ‘mongrel’ if you rear-end his ute or support a different footie team, but in the sense that we are animals of mixed breeding.

Colin Grove. Photo: Simon Brown

I want to write about the revelation made by palaeoanthropology over the last 25 or so years that Anatomically Modern Humans (AMH) have no single direct ancestor. The different species that gave rise to us bred with each other again and again, cross-pollinating over millions of years. We are, each and every one of us a mulatto, a crossbreed, a cafuzo, a zambo … in short, a mongrel. This is something for us to crow about. We are the beneficiaries of millions of years of striving, surviving and thriving by many other members of our hominin tribe. Having said that, recognising that we owe our existence to a plethora of species and not to one single predestined or divinely sanctioned line of descent, may also help us shed our belief in the exceptionalism of H. sapiens.

These posts are also a way for me to record a project I long dreamt of doing and eventually started some six years ago but can no longer complete, a book about hominin evolution I was writing with my friend, the late Colin Groves[i]. I cannot write that book without Colin –  his knowledge and experience were unique even in the rather rarefied circle of palaeoanthropology – but what I can do is finally record as faithfully as possible some of his ideas about hominin evolution.

To start with, I’d like you to meet a small child. A child named Taung.

Darwin was right

The child first came to attention in 1924 when it’s tiny skull was discovered by Raymond Dart in one of two boxes of tufa and sandstone debris he received as he was dressing to attend a wedding as best man.

Dart, an Australian doctor and anatomist, had only recently taken up the post of professor at the University of Witwatersrand in Johannesburg, and had spread the word he was interested in any fossils his students or acquaintances might uncover to help stock his fledgling laboratory. In this case, the debris was from a limestone quarry in Taung, a small mining town in South Africa’s Northwest Province.

When the boxes arrived he hurriedly inspected them. In the second box he saw something that changed his life and the history of palaeoanthropology.

In his own words, a thrill of excitement shot through him.

‘On the very top of the rock heap was what was undoubtedly an endocranial cast or mold of the interior of the skull. Had it been only the fossilised brain cast of any species of ape it would have ranked as a great discovery, for such a thing had never before been reported … a brain three times as large as that of a baboon and considerably bigger than that of an adult chimpanzee …

Cast of Taung child. Photo: Simon Brown

‘But was there anywhere among this pile of rocks, a face to fit the brain? I ransacked feverishly through the boxes. My search was rewarded, for I found a large stone with a depression into which the cast fitted perfectly … Here I was certain was one of the most significant finds ever made in the history of anthropology.

‘Darwin’s largely discredited theory that man’s early progenitors probably lived in Africa came back to me.’[ii]

Indeed, Dart’s discovery eventually switched the focus of palaeoanthropology’s search for the origin of our species from Eurasia to Africa, an origin Charles Darwin had predicted in The Descent of Man in 1871.

Using his wife’s knitting needles, it took Dart weeks to separate the Taung Child (Taung 1) from its breccia matrix. The paper[iii] he wrote about the discovery appeared in Nature in early 1925, and in that paper he named the specimen Australopithecus africanus, Africa’s southern ape.

Raymond Dart with the skull of the Taung child. Courtesy of Creative Commons. Photographer unknown.

At first, the scientific establishment reacted negatively to Dart’s hypothesis that the Taung Child represented an ancestor of modern humans. Heretofore it had been believed humans must have evolved in Europe or Asia, a belief reinforced with the discovery of H. neanderthalensis in 1829 (but not recognised as a different species from us until 1856) and H. erectus in Java in 1891 (a story we’ll come back to later in this series of posts).

Over the following decades, however, the number and diversity of fossils uncovered in southern and eastern Africa have overwhelmingly supported the ‘Out of Africa’ hypothesis for human origins.[iv]

The Taung Child itself was thought to be about three years old when it died. Not only was its life short, it ended violently. In 2006, the University of Witwatersrand’s Lee Berger wrote that marks in the Taung Child’s eye sockets and on its skull suggested it was probably killed by a large bird of prey.[v]

Even though it was the first described member of the genus, it turned out A. africanus was not its oldest member, and may not even have been one of our direct ancestors.

Meet the great-great-great-grandparents

At the risk of making a bad rhyme, exactly what does it mean to be an Australopithecine?

This is a matter of debate. Some scientists merge a chronologically older primate genus, Ardipithecus, with Australopithecus, to make the subtribe Australopithecina. Others leave out Ardipithecus, and include Paranthropus and Kenyanthropus with the Australopithecines. While they’re at it, some scientists consider Australopithecines to be a member of the human family, while others think the family starts much later – with the first species in the genus Homo.

It gets very confusing very fast, especially since every new discovery – and over the last 25 years there have been many of those – seems to generate a new species and subsequently a new debate of what it means to be human, hominin, or hominini (generally accepted to be humans plus chimpanzees). Or for that matter, what should be included in the genera Australopithecus, Homo, Paranthropus and so on and so forth.

For the sake of these posts, I’m assuming at this point that Australopithecines are fine and upstanding members of our human family. Great-great-great-grandparents (or cousins to the nth degree), in a manner of speaking. At a later point  I’ll be examining more deeply what makes a genus … but we’ll paddle that delta when we get to it.

Australopithecus anamensis: the first human? Courtesy of Creative Commons. Photographer unknown.

The oldest species belonging to this genus is A. anamensis[vi], kicking off just over four million years ago (mya). Other Australopithecines include A. garhi, A. afarensis (Lucy is probably the most famous example of this species, if not the most famous human fossil of all), A. bahrelghazali, A. deyiremeda, A. prometheus and A. sediba. A. sediba is the last known of the genus as well as the most recently discovered[vii], existing as recently as 1.8 mya, making it a contemporary of one of our ancestors, H. ergaster.

Over the two million plus years the genus existed, cranial capacity jumped from around the 360cc mark (slightly smaller than the average for a chimpanzee) to nearly 440cc, an increase of over 20%.

The Australopithecines are generally thought to have given rise to our genus around 2.4 mya. Occasionally one Australopithecine or another is nominated as materfamilias, but the truth is no one really knows which species – if any of those so far discovered – gave rise to our side of the family. As well, there is constant toing and froing about how many species there actually are (and as we’ll see the same toing and froing goes on in discussions about the members of our own genus).

In the next post I’ll discuss what lays at the heart of all of these debates: the big question, a question that may never be satisfactorily answered.

What makes a human … well, human?

Other posts in this series can be found here:

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 4 – Using your noggin

‘Us’ Part 5 – Feet and socks

‘Us’ Part 6 – Kith and kin

[i] For a full obituary, refer to the ANU’s Life Celebrations.

[ii] Dart, Raymond A. with Dennis Craig, Adventures with the Missing Link, London 1959.

[iii] https://www.nature.com/articles/115195a0

[iv] Including the discovery of Mrs Ples (STS 5) in 1947 by Robert Broom and John T. Robinson, an almost complete skull of A. africanus. (For more on Mrs Ples, see my earlier blog here.)

[v] https://www.semanticscholar.org/paper/Brief-communication%3A-predatory-bird-damage-to-the-Berger/15a0f813e5c4c978810bfee965fea1dcfdcb67f0

[vi] https://www.abc.net.au/news/science/2019-08-29/ancient-fossil-skull-found-in-ethiopia-fills-human-evolution-gap/11444130

[vii] In 2008, by Matthew Berger, the 9 year old son of University of Witwatersrand palaeoanthropologist Lee Rogers Berger.

12 February 2022: Interregnum

Apologies to everyone for the long interval between blogs.

Over the last six months, AJ and I moved from Johannesburg, South Africa to Vientiane, Laos, travelling via Australia to catch up with family and friends. Because of the Covid 19 pandemic and its associated lockdowns, quarantines and interrupted international travel, this has been a long, long process.

As well, I’ve been planning on working on a major piece on human evolution for some time, something I’ve slowly – and somewhat painstakingly – put together over the last 10 months. The piece is based on a book a friend, palaeoanthropologist Colin Groves, and I were writing together. From the short few chapters we managed to write before his death in 2017, from memories of our many weekly conversations, and from subsequent conversations with his wife Phyll and colleague Debbie Argue, that piece is now all but done. Although nowhere near as comprehensive as the book would have been, it’s still far too long to be viewed in one go, and will appear on this blog over the next few weeks in six sections.

Pha That Luang, Vientiane. Photo: courtesy of Creative Commons (photographer unknown)

Almost as a counterpoint to thinking about human evolution – dealing with relatively deep time – I’ve also been thinking about more recent human history, something spurred on by the pandemic, as well as crises in the Ukraine and the West’s fumbling, erratic handling of the inevitable rise of China. In the process, I came across this short piece I wrote for a workshop two years ago, arguing that the Napoleonic War (or perhaps more accurately, wars) were an essential ingredient in the making of the modern world.

So here it is, the first in what I hope is a much more regular series of blogs.

Napoleon and the modern world

I know … boring Euro-centric, male-centric, and military-centric history. Not really history at all, at least not as its understood these days. But still, the effects of this long conflict did two things that helped establish the world we now live in. First, it saw the creation of the most dominant modern European states. Second, it led to the rabid drive to colonise and exploit Africa.

The so-called First World War – the Great War of 1914-18 – was no such thing. The first true world war was the Seven Years War and occurred in the 1750s . It was fought in Europe, the Mediterranean littoral, west Africa, North America, southern Asia and the Philippines. The Napoleonic War was more of the same – the Second World War, if you like – but with extra countries thrown in and fought on a much more massive scale: bigger armies, bigger battles, greater civilian casualties and dislocation, and huge fleets of giant wooden ships sailing across all seven seas.

Artist: Paul Delaroche. Photo courtesy of Creative Commons (photographer unknown)

One thing you have to say for the Europeans, when they throw a party they make sure everyone’s invited, whether they want to join in or not.

The Napoleonic War involved military, economic and social mobilisation on a scale never seen before. Just two examples: between 1805 and 1813, Napoleon conscripted over 2,000,000 soldiers, and by the end of the war British national debt reached 200% of GDP.

Of course, Napoleon was a megalomaniac, but he also introduced dramatic reforms or consolidated reforms brought in by the French Revolution. Just three examples: the legal system, the Civil Code, influenced similar codes throughout Europe; the metric system is now used almost universally; and state-sponsored voyages of scientific discovery.

The Napoleonic War entangled the US in its first international conflicts: first against the French themselves (their previous ally during the American Revolution), and then, in 1812, against the British (their previous opponent during the American Revolution).

Prussia’s success resisting the French during the war cemented its position as the leading German-speaking country – a process begun 50 years before under Frederick the Great – leading to the creation of the German state itself under the direction of the Prussian Bismarck.

It’s hard to measure to the last centimetre or the last centime or the last degree Celsius the effect all of this had on the rest of the world. But when we talk about nation states, modern economies, science, art, culture and yes, even history, we are dealing with many ideas that had their origin or first great flowering during the Napoleonic era. When the wars were finally done, the continent of Europe – exhausted and battered and Napoleon sent to his last exile on St Helena – experienced nearly a century of peace, something that had never happened before. Instead European states competed with each other overseas, most dramatically in the race to colonise Africa during the 1800s.

The raw materials of the modern world can be found in early European colonialism and 18th century industrialisation, but for all its benefits we enjoy and all its crosses we bear, it was forged during the Napoleonic War.

04 February 2021: Family, community and conservation – a conversation with Dr Patricia Mupeta-Muyamwa

‘We need to codesign programs that move away from  disempowering communities and indigenous people to giving them the power to be  strong stewards of the natural resources and the lands,’ says Dr Patricia Mupeta-Muyamwa, Strategy Director for the African Indigenous Landscape program at The Nature Conservancy, a charitable environmental organisation with its base in the US.

Her job involves working with local communities to protect and nurture the natural environment. Patricia says she fell into the work more by accident than design.

Dr Patricia Mupeta-Muyamwa (Photo: Simon Brown)

‘I did my undergraduate degree in wildlife ecology at the University of Zambia in Lusaka, and in my last six months did an internship monitoring wildlife and vegetation in a national park. The job involved interacting with the park scouts, and after listening to their experiences I realised that it was people and not wildlife that was the problem, and I asked myself how do we empower people to make them better stewards of nature?

‘I did my Masters in conservation and tourism in the UK, and learned about different models of conservation. Because of the chequered history between national park administration and local communities, which left a great deal of animosity towards the state, my work promotes the importance of getting the rights to land and natural resources to the people that live closest to them.

‘Historically, African national parks and nature reserves were created for aesthetic reasons using an American model first developed for Yellowstone National Park.

‘Up until the 1990s, the state and not the local people ran national parks and conservation areas; it was a relic of Africa’s colonial past, and part of my work is to help address this injustice by reconciling local people so they’re a part of the conservation solution.

‘Local communities were forced out. People were seen as part of the conservation problem and not as part of the solution. For example, in South Africa national parks are still state run in a very centralised way; there are many communities around Kruger but few are getting any real benefit from it except a few people that find employment.’

Patricia says her long job title came from her work as it evolved.

‘A large part of the job is focused on protecting wildlife corridors spanning across parks, private and community-owned lands.

‘The work itself has three main objectives. First, giving land and resource rights back to the local community. Second, developing community skills to manage natural resources for example protecting and monitoring wildlife . Third, helping develop community opportunities for making a living from conservation, for example with tourism and programs that empower women.’

Patricia stresses this is a bottom-up approach. ‘A big part of my job is to consult with communities and their leaders to find the best conversation solution. I listen to their stories about living and interacting with the land.’

Patricia leads teams that are managing  four big landscape projects, one in Kenya involving 39 separate communities, two in Tanzania and one in Zambia.

Patricia with two young Hadza girls in Tanzania (Photo: Dr Patricia Mupeta-Muyamwa)

‘We’ll soon be starting a fifth one in Angola, based around the headwaters of the Okavango River.’

As an example of what these projects can achieve, Patricia cites the work done with a local partner Northern Rangelands Trust  with 39 separate communities.

‘Establishing wildlife corridors between these communities has been successful in increasing numbers of previously threatened animals such as elephants.


Patricia was born and raised in Kitwe, a mining town in Zambia’s Copper Belt on the Kafue River, Zambia’s third largest river. This is also where she first met her husband Andrew, now a Maths Studies high school teacher. The two of them have fond memories of growing up in this small, quaint mining town.

‘My parents worked for a mining conglomerate. My father worked for 27 years as a human resources manager for a copper mining company. He was a real people person, and connected with people from all walks of life.

‘My mother was a teacher, training first in Zambia to teach home economics, but later she studied in Liverpool in the UK to become a Montessori teacher; and was the first Zambian to achieve this.’

Patricia grew up in a one-party state created by independent Zambia’s first president, Kenneth Kaunda. Following a period of instability, the 1973 signing of the Choma Declaration banned all parties except Kaunda’s own, the United National Independence Party (UNIP). He remained in power until he was ousted after being forced to hold multi-party elections in 1991.

‘Kitwe’s British-South African owned mining company was nationalised by the Zambian government, so I grew up thinking it was normal to grow up in a black-run black society. It was a source of pride for us that Zambians were in charge of the company.’

Kenneth Kaunda, Zambia’s first president (1964-1991) (Photo: Creative Commons)

Patricia says that even though she grew up in a one-party state, she only became aware of that as she finished high school.

‘But living in it as a child you don’t necessarily feel authoritarian measures, for example restricted access to the world outside Zambia. We were cocooned, but that didn’t feel bad. In some ways I would rather live in that state than what exists now. Things worked: there was  infrastructure that worked, equity for all seventy-two tribes and a sense of security. I believe Kenneth Kaunda was motivated for the greater good of society. He created an environment that allowed everyone  to  have access to healthcare,  education and employment regardless of background.

‘Kaunda created a system where we didn’t feel black, but Zambian. My father’s generation, which grew up under colonial rule in what was then Northern Rhodesia, was taught British, European and American history at school; my generation was taught pre- and post-colonial African history.

‘Kaunda led the way in institutionalising a Zambian identity. As a kid I didn’t really appreciate the gravity of this, but looking back now I see that it helped me navigate through life as a Zambian. Kaunda called this philosophy “humanism” – in the sense that the core values were about recognising our common humanity, and that we should always be aware that history was judging us and so be peaceful, respectful and good to each other.’

But things started to change in the late 1980s and early 1990s.

‘The economy was stalling and there were food shortages. Up to then the majority of Zambians had been politically passive; there wasn’t a lot of collective activism. The system that existed helped make it that way. But at that point the multi-party democracy movement challenging Kaunda was slowly taken up by the people.

‘When I was sixteen I was apolitical, but then my dad took me and my older brother to my first political rally just before Kaunda left. It wasn’t simply an anti-Kaunda rally, but more about a wind of change. It was huge and exciting – there was a great desire for change – and when it came I was hopeful. Everything felt new and that at last we were going places and fighting for a better Zambia. There was a sense of entrepreneurship in the early 90s, and new markets were opening up. The mines were privatised, for example, and different assets were being sold, like the mining homes, and many Zambians became home owners for the first time.

‘But in the euphoria we forgot what Kaunda had done for Zambia. The current political system in Zambia is not as effective as the old political system. There is less equity and less access to health, work and education. The Zambian economy is on life support.’


The future Dr Patricia Mupeta-Muyamwa in 1976 with older brother Chris, left, and younger brother Michael, centre (Photo: Dr Patricia Mupeta-Muyamwa)

The one great source of stability for Patricia is her family.

‘I come from a very strong nuclear family, which is not the norm for families in Africa. It is a central part of who I am. My husband, parents, siblings and my maternal grandmother have all influenced my life in different aspects.’

Patricia says her grandmother, Dorika, was independent, strong-minded, political and entrepreneurial. Born in the early 1920’s, she witnessed  her country move from a colonial to a post-colonial era.

‘She was a Kaunda supporter and freedom fighter from the colonial era. She later became a strong organizer in the women’s league of the United National Independent Party (UNIP).

‘Towards the end of the colonial period she accompanied her husband, a community development officer, to different postings all over the country. In one posting he was sent to a district in the northwest at the same time as the colonial authorities imprisoned Kaunda there; when Dorika saw Kaunda being taken for his daily walk she would go up and talk with him, much to the distress of the local British officials. During one encounter she was reprimanded by the District Governor for this action. She held her ground, and continued with her actions. This upset the Governor and he later transferred my grandfather  away from the district because of his “troublesome wife”.

‘During the time when there was a call for change from Kaunda’s rule, she said “No! No change!”’

Dorika and Bilson Muzi, Patricia’s grandparents, taken in 1963 at Kabompo, North Western Province, where Dorika upset local authorities by talking with the imprisoned Kenneth Kaunda. Patricia’s future mother is standing on the right. (Photo: Dr Mupeta-Muyamwa)

After her husband died, Dorika supported her family of eight children by selling bread and other baked goods from home and at the market.

‘With two other women she set up one of the first female trading markets in Kabwe, a small mining town in central Zambia; it’s still operating to this day.’

Patricia says she drew a great deal from her grandmother.

‘I admired the way she navigated through life and survived as a woman and as a leader. She did so much in her life and in her own way. The older she got the stronger she got, and she was a great female model. She really lived life in her own terms.’

Patricia’s father, David, was the biggest male influence on her life. ‘My love of reading came from him. I loved going into his library. I read his 12-volume encyclopedias over and over.’

Patricia says growing up she never gave her mother the same attention she gave her father.

‘I was a “daddy’s girl”, and she wasn’t in my “cool space” back then. Now I realise just how similar we were. She was a trail-blazer. She was the first Zambian to study and teach Montessori; that took a lot of initiative and courage.’

Perhaps the biggest influence her mother had on her life was her decision to send Patricia and her sister, Edith, to an all-female boarding school run by German nuns; one of the oldest and best schools from its establishment in the early 1900s. She remembers the school was run under a very strict regime.

‘I did not like it at all. The nuns worked us very hard. When I tell people I went there they ask me if my parents hated me! But in hindsight, the education I gained from that time was invaluable.’


Patricia says she wasn’t really conscious of her skin colour until she travelled to the UK and, especially, the US, for study.

‘I’m not sure whether or not that was a peculiarly Zambian experience. I’ve heard very different stories about encounters with racism from other black people, many of them heartbreaking.

‘Up to then I never thought of myself as a “black” person. My first racist encounter was in the UK when I was in my early 30s, when a hobo at a train station yelled at me to go “home”. I was shocked more than hurt by it because for the first time I became truly aware that this society was different from the one I grew up in.’

She says that while studying for her masters at the University of Kent she felt she was living in a bit of a bubble because she was very familiar with the British tradition and culture that had been such a part of Zambia before independence.

‘Growing up in Kitwe I had many encounters with non-racist and progressive Brits. It wasn’t until I was studying in the US that racism really hit me.

‘Soon after I arrived at the town where I was going to study I started looking for accommodation and came across a poor black neighbourhood. I began to understand how a community placed like this, separated from better-off communities, institutionalised racism.

‘US culture was strange and interesting. I was living in a diverse and liberal university town in northern Florida, but you didn’t have to drive far from the town to find Confederate flags flying in front yards. It was a totally different society.

‘For the first time I felt and identified as “black”. I found myself gravitating towards black student unions and organisations helping black communities.’

Patricia was saddened to see great poverty in some black communities in the US. ‘I had seen poverty in Africa, of course, but here it was like the lights had gone out. There was a lot of hurt and anger in that tribe – a tribe I can relate to – but the hurt and anger also existed in the academic environment which was so different from my previous experience it threw me off guard somewhat.

‘What I also found interesting was the way the black community was divided among African Americans, Caribbeans and Africans. It could be hard to cross the divide, but I’m not sure how much that was due to my own naivety. The black student union had a good ethos, for example, but it’s leadership was African American, and they defined the union’s agenda and this is where a lot of the union’s energy was spent. I had to think about what it meant to be an African in this situation. My initial enthusiasm at being part of the union started to wane because I couldn’t see what my role might be.’


Patricia says she identifies as Zambian but feels African.

‘I especially feel broadly connected to sub-Saharan Africa. African countries like Zambia, Kenya, Botswana and South Africa have more in common than not.

Patricia at the farm owned by her and her husband Andrew in the village of Chifwema, southeast of Lusaka, Zambia’s capital. (Photo: Dr Mupeta-Muyamwa)

‘There is a connection around tradition, culture and how we think about family. There is a very strong “oneness” around family events that goes with a sense of community. This means there is still an especially strong tie in many countries between urban and rural communities; people working in the big cities still go back  to their families living in rural areas for important occasions.’

Patricia hopes those values will see sub-Saharan Africa through to a better future. ‘Right now, for example, that rural link for urban dwellers means many of them have a comparatively safe refuge during the current COVID-19 pandemic.

‘Strangely, this isn’t what’s happening in Zambia, where the rush to urbanise seems to have cut many of those ties to the country. I don’t know the village where dad came from, for example.

‘Africa needs to reconnect to its core identity. I believe we lost this connection as we urbanised. My hope is that we will see those links repaired in Zambia and other parts of Africa.’

06 April 2020: Possible new date for arrival of Homo sapiens in Australia

In an earlier blog I mentioned a letter to Nature that suggests up to 2% of the Papuan genome originated ‘ … from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa.’

If correct, this is important because it pushes back the earliest currently accepted dates for the human occupation of Australia (well, Sahul back then) beyond 50,000 – 60,000 years.

New evidence for a possible earlier date has now come from a site near Warrnambool, a town on the southwest coast of Victoria, where scientists have been investigating a site at the mouth of the Hopkins River. In a paper from CSIRO, it is described as an ‘erosional disconformity of last Interglacial Age’ where the shells of edible molluscs and transported stones were discovered.

Hopkins River mouth

The mouth of the Hopkins River. (Photo from Warrnambool local government website.)

It is not known for sure whether humans or animals such as seabirds made the formation, but the site has been confirmed as a midden, and evidence for fire damage to the stones suggests they may have been used to make a hearth.

Thermoluminescence analysis of the stones, together with independent stratigraphic evidence, suggests the hearth could date back between 100,000 – 130,000 years.

If true, not only does this double the possible dates for the earliest occupation of the Australian landmass, it also considerably pushes back the earliest currently accepted dates for the first successful emigration – an emigration resulting in living descendants – of AMHs out of Africa by as much as 20,000 – 50,000 years.

(The research was presented to the Royal Society of Victoria by, among other academics, Jim Bowler, who discovered Mungo Man in 1974. The Guardian’s Paul Daley wrote about the paper and interviewed Bowler in March last year. Also, see this from the Royal Society of Victoria’s own website.)

15 September 2018: The not-so-big (but still mightily impressive) ten

Last weekend, AJ and I went camping at Pilanesberg National Park. Well, I say camping. Our tent had a refrigerator in it. And a kettle. And power points for our mobile phones.


Extraordinarily rough camping conditions prevailed at Pilanesberg.

Anyway, together with some fellow teachers from AJ’s school we went comfortably camping at a park famous for providing visitors the opportunity to catch sight of the Big Five: Cape buffalo, elephants, leopards, lions and rhinos.

While we did manage to see a line of lying lions in the distance – we needed binoculars to find them – for the most part the Big Five managed to elude us.

This is probably because AJ and I decided to forgo the chance of getting up before sunrise and braving subzero temperatures to tour the park in an open truck. Those who did make the effort not only managed to see the Big Five but cheetahs as well. However, they were cold. Very cold. Their fingers snapped off trying to focus their Nikon 70-300 zoom lenses.

We, on the other hand, got up at a civil hour, had a hot breakfast, and entered the park about 9.30 am, courtesy of the generous school librarian and his huge red ute. Although most of the predators and large herbivores had by then decided to migrate to warmer climes, we did see plenty of impressive wildlife, including kudus, wildebeest, zebras and giraffes.


Grey heron.

And our fingers didn’t drop off focusing our zoom lens. Not just because it was warmer, but because our camera decided to stop working, forcing us to rely on the cameras on our mobile phones.

In fact, we didn’t really have to leave our tent to see some very impressive locals. Our camping site had been colonised by a several groups of impala, vervet monkeys, chacma baboons, banded mongooses, hornbills and helmeted guinea fowls.

The impala were the most impressive of all. They’re magnificently streamlined antelopes with a colour scheme designed by an Italian fashion house. The males sport magnificent horns shaped like ancient Greek lyres. The effect is somewhat spoiled when the males start practicing for the rutting season by pretending to come to blows and blowing through their noses, sounding like a parcel of agitated pigs with head colds.


Impala cleaning his nose in preparation for a good snort.

The funniest sight is watching the normally docile guinea fowls suddenly scatter, running one way and then the other. AJ said the bird reminded her of a fusty old women from the 19th century picking up her skirts and pelting down the street.

The vervets spend most of their time high in trees or sitting like sandstone statues on the roof line of the campsite’s restaurant. They look down on their fellow primates with aloof disinterest.


Vervet practising aloofness.

One of the highlights of the expedition was totally unexpected. We came across the ruins of an iron age kraal not far from the park’s entrance. The area’s fenced off, and if the main gate’s red light is flashing – meaning something like a lion or leopard or elephant is also touring the ruins – you’re advised to stay out. On this occasion we were the only visitors.

The kraal was built by the Tswana chief Pilane, hence the name of the park. The ruins are well signed, giving a brief history of the kraal and what the various buildings and spaces were used for. The kraal’s main lookout provided wonderful views of the park. It reminded AJ and me of some of the ancient hill forts on the border of Wales and England we visited in 2010. Although those hill forts weren’t surrounded by thorn trees. I managed to get one long branch wrapped around my left leg. It took some doing to disentangle myself, and the small wounds made by the thorns itched for hours afterwards.


Warning outside the iron age kraal.


The kraal itself!


View from the kraal lookout.



A second highlight was the visitor’s centre, where people can eat and drink on a wide deck overlooking the bush. A large salt lick is placed not far from the deck, drawing giraffes, zebra and wildebeest, although when we were there only one giraffe, the biggest, got to enjoy the lick. He’d tolerate other giraffes having a go, but didn’t hesitate kicking any wildebeest who came for their turn. The zebras were pluckier than the wildebeest, but no more successful.


A giraffe. Not a zebra or wildebeest.

The landscape between Johannesburg and Pilanesberg is eerily familiar. Geographically and botanically it’s very similar to the Southern Tablelands, especially the stretch between Canberra and Yass. It’s not surprising, I suppose: South Africa and Australia were once joined at the hip. The soft landscape is covered in grasses and acacias and other plants adapted to a hot, dry climate. True, South Africa has lions while Australia has sheep, and South African kopjes are rockier than Australian hills, but nonetheless …

The similarity even extends to bushfires. Pilanesberg hosted its own bushfire the week before we arrived, and large parts of the park were black and ash grey, again strangely familiar to anyone from inland New South Wales.


Bushfire damage.

It’s not like AJ and I are looking for similarities, but perhaps a little homesickness makes you look for them instead of the differences.

In October, we hope to make our way southeast to Durban for a few days, stopping over at the Drakensberg on the way.

24 August 2018: When did humans first leave Africa?

This blog post is titled ‘When did humans first leave Africa?’ I confess, it’s a trick question, but we’ll come back to that later.

So to start with, let’s attempt to answer not a trick question but a trickier question: when did Homo sapiens first reach Australia?

This has been a contested debate for several decades, with proposed dates stretching from 75,000 years ago to 40,000 years ago. The bottom mark was established by the dating of the remains of Mungo Man, the oldest remains  of anatomically modern humans (AMH) yet found outside Africa.

Mungo Man

Mungo Man

Towards the upper end, luminescence dating of sediments around artefacts recently found at Madjedbebe in the Northern Territory give a date of around 65,000 years, although this is contested.

In a recent article in The Conversation, ‘When did Aboriginal people first arrive in Australia?’, authors Alan Cooper, Alan N. Williams and Nigel Spooner state the ancestors of Aboriginal Australian first reached Australia sometime between 50,000 and 55,000 years ago, just after AMH left Africa.

This date comes from geneticists working on Neanderthal ancestry in the modern human genome. In ‘Tracing the peopling of the world through genomics’, authors Nielsen et al. write that:

‘All non-African individuals studied so far contain around 2% Neanderthal ancestry, suggesting that admixture mostly occurred shortly after the dispersal of anatomically modern humans from Africa … the date of hybridization has been estimated to be approximately 50–65 kyr ago …’

33.1 H. neanderthalensis Amud 1 0.4-0.04 mya

Cast of H. neanderthalensis (Amud 1) from the Australian National University. Photo: Simon Brown

This date is now generally accepted by palaeoanthropologists.

But that presents us with a quandary. As I wrote in an earlier blog, fossils from the cave of Jebel Irhoud in Morocco, together with genetic data from a 2,000 year old Khoe-San skeleton, suggests our species arose in Africa at least 300,000 years ago. So why did it take our species a quarter of a million years to find the exit?

Well, as it turns out it, it didn’t.

In a January 2018 report in Science, authors Chris Stringer and Julia Galway-Witham note that recent fossil evidence from Israel suggests our species had left Africa by 180,000 years ago. The report also recounts genetic analyses of Neanderthal fossils from two caves, Denisova in Russia and Hohlenstein-Stadel in Germany, that ‘indicate at least one earlier phase of introgression, from H. sapiens into Neandertals … estimated at 219,000 to 460,000 years ago’.

At this stage, it seems that AMH could have left Africa over 200,000 years ago, and yet DNA evidence strongly suggests the ancestors of all non-African members of our species left Africa no earlier than 60,000 years ago.

So what’s going on?

Nielsen et al. write that the latter date indicates when the ‘ultimately successful’ dispersal of H. sapiens from Africa occurred. In other words, those members of our species who left earlier are now extinct and left no trace in our genetic record.

Stringer and Galway-Witham write that there is evidence there were several humid phases between 244,000 and 190,000 years ago. But these phases were bracketed by severe periods of aridity, which meant ‘the region was probably more often a “boulevard of broken dreams” than a stable haven for early humans.’

Chris Stringer

Chris Stringer, Research Leader in Human Origins, Natural History Museum

On the other hand, a letter published in Nature in 2016 suggests that earlier migrations of H. sapiens from Africa may have left their mark on some of us after all; specifically, Papuans.

After analysing ‘a dataset of 483 high-coverage human genomes from 148 populations wordwide … ‘ Pagani et al. found ‘ … a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans … out of Africa.’

This brings us back to the article in The Conversation. Cooper et al. discuss how Aboriginal Australians moved to and occupied Australia around 50,000 years ago. Of course, 50,000 years ago it wasn’t Australia, it was Sahul, a single landmass comprising Australia, Tasmania and Papua New Guinea.



Yet the letter in Nature suggests that Sahul might in fact have been occupied by H. sapiens before that date. Its authors hypothesise either that these people came from an unsampled archaic human population that split from modern humans ‘either before or at the same time as did … Neanderthal’, or that they were a modern human population that left Africa ‘after the split between modern humans and Neanderthals but before the main expansion of modern humans in Eurasia’.

The data from all this research is sometimes confusing and contradictory. Over the last quarter century palaeoanthropology has undergone a great revolution driven partly by discoveries of new hominin fossils (eg H. floresiensis and H. naledi), and partly by new and refined techniques in analysing DNA. There is a lot of data to sort through, doublecheck and assess. Nevertheless, as measurements are refined and new discoveries are made, we learn more about our past and so more about ourselves.


So, why is the header a trick question?

H. habilis

Homo habilis

All the above information deals with the history of just one species, our own. But H. sapiens were not the first humans to leave Africa. For example, some members of H. heidelbergensis left Africa around half a million years ago, evolving into H. neanderthalensis in Europe. Those that remained in Africa almost certainly gave rise to H. sapiens.

And if the conclusions of a recent paper by Argue et al. studying the phylogeny of H. floresiensisis are correct, then another and possibly earlier human migration out of Africa occurred. This species’ forebears are closely related to H. habilis, the oldest species in our genus, Homo.

It’s almost as if the need to migrate is as defining a feature of our genus as bipedalism, a large brain and an opposable thumb.

17 October 2017: Walking statues, colonialism and free speech

I am a white male living in a society largely designed by white males for the benefit of white males. As such, I am a member of history’s most privileged group, a group that numbers no more than a few hundred million in a world inhabited by over seven billion human beings.

What got me here, together with every other member of that group, was a toxic mixture of imperialism and colonialism. Not toxic for me, I hasten to point out, but toxic for billions of other human beings.

It’s not necessary to point out how many first peoples suffered because of European expansion from the 15th through to the 20th centuries. Nor should we defend that expansion by referring to the benefits brought by the introduction of ‘Western’ inventions such as double-entry bookkeeping and modern farming methods, as if they were handed out by the Conquistadors and Australia’s first settlers at the same time as the distribution of smallpox and musket balls.Imperialism

Imperialism and colonialism also transformed slavery into a global business. The fact that Europeans didn’t invent slavery shouldn’t stop us acknowledging that developments such as double-entry bookkeeping helped Europeans perfect it, in the same way the musket ball helped perfect total war.

In a very roundabout way that brings me to the topic of walking statues. Specifically, Rapa Nui’s moai – the monumental statues of Easter Island.

Rapa Nui has been used as the example par excellence of ‘ecocide’, what happens to a society that selfishly exploits its own environment beyond recovery and thereby destroys itself. I swallowed without questioning this explanation for the island’s depopulation and deforestation, promoted in books like Jared Diamond’s Collapse: How Societies Choose to Fail or Survive.

But it may not be true.

University of Bristol researcher Catrine Jarman explains in her article in The Conversation, that many decades of archaeological research on Rapa Nui ‘paints a very different picture’.

As Jarman writes:

‘The ecocide hypothesis centres on two major claims. First, that the island’s population was reduced from several tens of thousands in its heyday, to a diminutive 1,500-3,000 when Europeans first arrived in the early 18th century.

‘Second, that the palm trees that once covered the island were callously cut down by the Rapa Nui population to move statues. With no trees to anchor the soil, fertile land eroded away resulting in poor crop yields, while a lack of wood meant islanders couldn’t build canoes to access fish or move statues. This led to internecine warfare and, ultimately, cannibalism.’

Essentially, there is no convincing evidence that Rapa Nui’s population declined before first European contact in 1722. Furthermore, recent evidence suggests that the island’s population successfully sustained itself for centuries despite deforestation occurring soon after the island’s initial settlement by humans, deforestation caused by the accidental introduction of the Polynesian rat which ate palm nuts and saplings.

So what did happen to the people of Rapa Nui?

Again, in Jarman’s own words:

‘Throughout the 19th century, South American slave raids took away as much as half of the native population. By 1877, the Rapanui numbered just 111. Introduced disease, destruction of property and enforced migration by European traders further decimated the natives and lead to increased conflict among those remaining.’

The disaster that befell the people of Rapa Nui came about because of the slave trade of the 18th and 19th centuries, itself a result of European imperialism and colonialism. Effectively, the victims of that depopulation subsequently were found guilty of the crime.

If the forests weren’t cut down to move the moai, how did the islanders transport the statues from where they were made to where they were eventually sited?


Rapa Nui moai

It turns out they probably moved them in the same way you or I would move a heavy washing machine or refrigerator … they walked them. Admittedly, this involved a great deal more human muscle power and coordination than two people clumsily angling white goods through a narrow corridor. Recent experiments show that this was perfectly possible.

(For a full explanation of how this was done, and the true story of how Rapa Nui became depopulated, check out The Statues that Walked, by Terry Hunt and Carl Lipo.)

I can’t argue that imperialism and colonialism had no benefits. It benefitted me, for example. Without them I wouldn’t be here now, a middle-aged male living in middle-class splendour in Australia, a collection of ex-colonies. Nor can I argue against the proposal that the modern world is a direct result of those movements. Nor can I argue against the proposal that industrialisation and modernisation, two direct products of those movements, hasn’t improved the lot of billions of human beings over the last two centuries.

What I can’t argue, however, is what Portland State University’s Bruce Gilley suggests in an article recently published in Third World Quarterly. An associate professor of political science, Gilley proposes that ex-colonies that develop their Western colonial legacy do better that those that reject that legacy. One of the examples he uses is the modern nation of Singapore.

I suspect Gilley is wrong, especially in the case of Singapore where its success is almost entirely due to the self-created ‘Singapore model’, a mixture of democracy, authoritarianism and meritocracy that has delivered remarkable growth and one of the world’s highest standards of living. But I strongly believe Gilley has every right to express his academic opinion in an academic journal.


Singapore skyline

As reported by Andy Ngo in Quillette, both Gilley and the journal’s editor-in-chief Shahid Qadir received threats of violence after the appearance of the article on 8 September, and the publishers of Third World Quarterly have withdrawn it. I recommend reading Ngo’s piece to get the full story.

I do not think hate speech or speech inciting violence should ever be published, whether it is an article written for a journal, an opinion piece in a newspaper, or an enraged Tweet by an American president. But I do not think it is right to censure someone’s research because you disagree with its conclusion. In fact, that kind of thinking encourages hate speech and incites violence. Worse, ultimately, it shuts off debate, dialogue and intellectual curiosity.

The problem for those who think that the evils of colonialism are so great that any defence of it is anathema and should be closed down is simply this: it allows history to be written by those who shout the loudest. It establishes a precedent, a precedent that may one day lead to the censorship of articles that explain why colonialism was wrong, and how the moai of Rapa Nui came to walk.

(NB Jared Diamond has responded to some of the claims made in Hunt and Lipo’s book, The Statues that Walked. You can check that out here. Thanks to friend, physicist and fellow-writer Rob Porteous for the heads-up.)