Author: Simon Brown

27 April 2022: Past and present in Xieng Khouang

After American planes had finished their bomb run, a six-year old girl joined others in escaping the cave in the hills of Xieng Khouang where they’d been hiding. But as she and the other children played, one plane returned and dropped one last bomb.

Inside the cave at the Plain of Jars Site 1. The hole in the ceiling of the cave is artificial to let out smoke and let in light. This cave and many like it in Xieng Khouang were used as places of refuge during the Indochina War.

A piece of shrapnel hit the girl in the right leg. Her grandmother, who’d also been outside, was killed outright. Her father carried the girl on his back for 25 kilometres to the cave where a medical team could be found.

That six-year old girl grew up with one damaged leg. She could not labour in the fields like her parents and siblings, nor could she weave. Instead she opened a small store at the junction of three roads in Phonsavan, the province’s capital, selling beer and cigarettes, school exercise books and biscuits, and soap and toothpaste.

Now, 54 years later, her daughter Sakhone Bounthala runs the store and the small pharmacy she herself opened next door.

‘I grew up working in my mother’s shop. It was the last thing I wanted to do when I grew up, so I studied pharmacy. And yet here I am.’

#

Plain of Jars Site 1.

Xieng Khouang is a province about 200 kilometres north of the Laos capital, Vientiane. For Westerners it is best known  for the Plain of Jars, a megalithic archaeological location of great importance which in 2019 was made a UNESCO World Heritage Site.

The Plain of Jars is set among rolling hills at the end of the Annamite Range, Indochina’s long mountainous spine. The thousands of stone jars that give the place its name were built during Southeast Asia’s iron age, between 500 BC and 500 CE. No one knows who made the jars, although it seems likely they were related to the Hmong population now living in the province, and no one really knows what happened to their civilisation.

#

Sakhone doesn’t just run the pharmacy and general store. With her husband David Deweppe she also operates a bed and breakfast in Phonsavan called PuKyo – Lao for Green Mountain. While David, a Belgian who found his true love and true home in Laos, looks after the guest house, Sakhone takes time from the two stores to take guests on guided tours to the Plain of Jars and other nearby sites.

The PuKyo B&B in Phonsavan, Xieng Khouang’s capital.

The Covid pandemic hasn’t been kind to any country’s tourism industry, but developing countries like Laos have been hit particularly hard. Recently, however, borders are opening up and the flow of tourists is now a steady trickle.

AJ and I were part of a small group of friends that stayed at PuKyo for a brief three days, the first time the guest house had been filled for over two years. During our short visit there was the definite sense that life in Phonsavan was returning to something like normal: the roads were busy with traffic, shops were open, people were frequenting restaurants and cafes and promenading on the walkway around the town’s reservoir.

#

Bomb casings at the Plain of Jars museum.

For the nine year from 1964 to 1973, Laos suffered on average a bombing mission every eight minutes, 24 hours a day. The USA dropped more ordnance on Laos than it did on Germany and Japan during WWII. For the size of its population, Laos is the most bombed country on Earth. Up to 30% of those bombs failed to detonate, and still litter the countryside.

Xieng Khouang was the second most bombed province in Laos. Unexploded ordinance (UXO) contaminates 25% of its villages. Between 1964 and 2008, there have been 50,000 casualties of UXO, and 20,000 of those casualties have occurred  since the Second Indochina War ended in 1974. It’s estimated that over 80 million bomblets (from cluster bombs) remain undetonated.

#

Not all the jars are the same size or shape. These elongated jars can be found at Site 2.

In the 1930s a French archaeologist, Madeleine Colani investigated the Plain of Jars. There are 17 sites in total, scattered over the province, and only the main one, Site 1, is actually located on a plain. The other sites are located on hills or ridges.

Some of the jars have trees growing out of them.

Colani thought Site 1 marked the centre of the civilisation that built the jars, and from the bones, ash and beads she found thought the jars were built to hold cremated remains. Burials were also found around the jars, containing tools, pots, knives and jewelry, possibly because family members belonging to whomever was cremated were interred around them.

After Colani, the next major investigation was well after the war, during the 1990s, followed by a Lao-Australian dig that lasted from 2016-2020. The results of these later expeditions seemed to confirm Colani’s original hypothesis about the purpose of the jars.

#

One of the heroes of Laos is Kommaly Chanthavong, a woman who learned the art of silk weaving from her mother when she was five years old.

Weaver at work at the Mulberries Organic Silk Farm.

In 1976 she used what little money she had to buy looms and employed war-displaced women to operate them. At first known as the Phontong Weavers, they eventually became better known as the Phontong Handicraft Cooperative, a network of Lao artisans that now spans 35 villages and connecting 450 artisans.

Impressed by her success, in the 1990s the Lao government gave the cooperative 42 hectares of land just outside Phonsavan for use as a silk farm. But there was one catch. Like the rest of the province, the land had been heavily bombed and was littered with UXO. The cooperative itself removed the bombs and then set about planting mulberry trees. Those 42 hectares of land now makes up the Mulberries Organic Silk Farm.

All the silk is dyed with colours made from locally sourced leaves, berries, bark and roots.

As with the PuKyo guest house, we were among the first tourists to visit the farm in more than two years. During that time they had continued their work, growing trees and raising silkworms, then collecting, spinning, dyeing and weaving the silk they got from the animals’ cocoons. With the silk they make extraordinarily beautiful clothing and accessories such as bags and scarves.

Kommaly Chanthavong travelled from village to village throughout the country, encouraging young people to become involved in the industry, and the Mulberries Organic Silk Farm has played an important part in training more than two thousand farmers and weavers from five provinces, helping to create over three thousand jobs.

#

One of the bomb craters that pockmark the Plain of Jars.

Because Site 1 at the Plain of Jars offers sweeping views of the surrounding area it became a prime target of bombers during the Second Indochina War. Ancient jars were blown apart or completely obliterated. Even today, when wandering around the site, tourists run the risk of falling into bomb craters and trenches.

It’s a terrible irony that a place used to cremate and bury the deceased became a killing field two thousand years later. The descendants of those who made the jars have paid a heavy toll in dead and wounded for the Second Indochina War, a toll many of them still pay when they till their farms, or when children play in the fields, or when they simply walk along the hills, the ridges and valleys of Xieng Khouang.

#

The walkway around Phonsavan’s reservoir.

The people of the province – and its landscape – have been scarred by war, but while the past is something they cannot forget they’re not allowing it to shape their future.

AJ and I will definitely return to the PuKyo in the near future, not only to treat ourselves to Sakhone and David’s hospitality once more, but to visit the gentle rolling plains and hills with their megalithic stone jars, and to revisit the Mulberries Organic Silk Farm, and to spend more time with Xieng Khouang’s gentle, enterprising and resilient inhabitants.

(All photos: Simon Brown.)

For those interested in visiting Xieng Khouang, PuKyo B&B can be found here on Facebook.

10 March 2022: ‘Us’ Part 6 – Kith and kin

Hobbits and their ancestors

One of the great palaeoanthropological bombshells of the last generation was the discovery of Homo floresiensis on the Indonesian island of Flores. For years scientists debated what ancestor this new and somewhat diminutive hominin – dubbed the ‘Hobbit’ by the media – had come from, or indeed if it should even be included in our genus.

Homo floresiensis reconstruction. Courtesy of Creative Commons. This image created by ATOR.

While now generally accepted as a member of our broader tribe, its origins are still fiercely argued, many insisting it’s nothing more than H. erectus that’s undergone insular dwarfism. But I think a 2017 paper written by Colin Groves, Debbie Argue, Michael Lee and William Jungers, convincingly demonstrates that H. floresiensis is not derived from H. erectus (or is a diseased example of H. sapiens), but rather from a much earlier hominim such as H. habilis or a sister species.[i]

A second paper, published in 2020[ii], backs up this hypothesis, and concludes with this statement:

‘ … something which on account of our inadequate current taxonomic framework we have to call “early Homo” differentiated in Africa, possibly as early as 2.8 (mya) … Subsequently, one or more members of this group reached the Mediterranean fringe and spread Out of Africa at 2.5 Ma. After successfully expanding over Asia, at least one of those hominins … gave rise to new species that reached the Caucasus by around 1.8 (mya), and thence Europe by ca. 0.9 (mya) … (the) eastward expansion (or occupation) in Asia of small-bodied and archaically-proportioned hominins continued, possibly in multiple waves; and, by ca. 0.8 (mya), representatives of this group had penetrated as far as insular southeast Asia, where H. floresiensis ultimately emerged … ’

Indeed, some scientists considered this possibility as early as 2005. A report about the brain of H. floresiensis published in Science in that year[iii] concludes with these lines: ‘Although it is possible that H. floresiensis represented an endemic island dwarf that, over time, became subject to unusual allometric constraints, an alternative hypothesis is that H. erectus and H. floresiensis may have shared a common ancestor that was an unknown small-bodied and small-brained hominin.’

Homo habilis. Courtesy of Creative Commons. Photographer unknown.

I think an increasing weight of evidence strongly suggests that the first major exodus of our genus from Africa was carried out by H. habilis or one or more of her sisters. Furthermore, I think it’s possible that these closely related species then gave rise to H. erectus, H. pekinensis, H. luzonensis[iv] and H. floresiensis in Eurasia, while those remaining in Africa gave rise to H. ergaster. This does not preclude the possibility, or perhaps probability, of any or all of these species crossbreeding if they ran across each other.

But what of H. sapiens, our own species? As with H. ergaster and H. erectus, the evidence here is convoluted, confusing and often contradictory.

Mongrel

For those, like Colin Groves, who think H. ergaster is a species in its own right, the line of descent works something like the following.

Homo heidelbergensis. Courtesy of Creative Commons. This image created by ATOR.

About 600,000 years ago, H. ergaster, either directly or through an intermediary species called H. rhodesiensis, gave rise to H. heidelbergensis. This species was our size physically, and his brain capacity was well inside the standards of Anatomically Modern Humans (AMH). Following the great tradition of hominin migration, something that seems as ingrained in our genus as bipedalism, some members of this new species moved to Europe[v]. About 400,000 years ago, they gave rise to H. neanderthalensis. In a case of ‘well, we’ll show you’, those who stayed behind in Africa gave rise to H. sapiens at least 300,000 years ago, and possibly as long as 350,000 years ago.[vi]

I can’t stress this enough. Homo sapiens are Africans. It is where our archaic ancestors and AMH first appear[vii]. (Let me also stress that this story, as complicated as it gets from now on, does not resurrect the Multiregional Model for our evolution, where H. erectus gave rise to H. sapiens across its whole range at the same time, from Africa to Asia. This is an old theory, now largely discredited by the extensive fossil and DNA evidence that our species first evolved in Africa.[viii])

What happened next has been slowly and painstakingly uncovered by palaeoanthropologists doing field work throughout Africa and Eurasia, and by the outstanding work performed at the Max Planck Institute’s Department of Evolutionary Genetics, headed up by Svante Pääbo, into hominin DNA.[ix]

What the DNA evidence strongly suggests is that H. sapiens successfully left Africa between 70,000 and 100,000 years ago. (Although this wasn’t the first migration into Eurasia by our species. It is usually held that previous attempts left no trace in the DNA of AMH outside of Africa, but see these earlier posts, here and here.)

Female Homo neanderthalensis. Courtesy of PLOS ONE.

Members of the most recent migration interbred with H. neanderthalensis, probably in what is now the Middle East, and later with the Denisovans, another possible descendant of H. heidelbergensis, deeper in Eurasia[x]. To this day, the average ex-African H. sapiens carries between 1%-2% of the Neanderthal genome; but it is not the same one or two percent: we overlap. Overall, we carry up to 40% of the Neanderthal genome in our own genes. But the story gets more complex still: the genome of people from Oceania, such as Papuan New Guineans and Australian Aborigines, can have between 5-6% Denisovan DNA[xi]; indeed, recent research suggests that Ayta Magbukon Negritos in the Philippines have Denisovan ancestry 30-40% higher than either of these two groups.

The Natural History Museum of London’s Professor Chris Stringer says, ‘It is now clear there was a lot more interbreeding between ancient species, including early Homo sapiens and others, and that there was a lot more movement of populations both in the distant past – and relatively recently.’[xii]

Homo sapiens (Oase 2) reconstructed from bones 37,000-42,000 years old discovered in the cave of Peştera cu Oase in Romania. Around 7.3% of his DNA is from H. neanderthalensis, from an ancestor 4-6 generations back. Courtesy of Creative Commons. Photo: Daniela Hitzemann.

Talking about recent research, in June last year Chinese scientists announced that a cranium first discovered in China almost a century ago, is a new species of Homo with a brain easily the equal of any AMH in size and carried inside a skull more massive than ours. Those making the announcement have named the new species H. longi (‘Dragon man’, and just as Denisovans are sometimes described as a sister species to Neanderthal, so H. longi is being claimed as a sister species to H. sapiens[xiii]).

As Lee Berger, from the University of Witwatersrand and the discoverer of Australopithecus sediba and H. naledi, has suggested, perhaps the different paths of human evolution are not best thought of as branches spreading from a single tree trunk, or even a messy, many-twigged bush, but rather a braided stream[xiv] with tributaries constantly running across each other before separating, rejoining and separating once more.

The Waimakariri River in New Zealand is braided along almost its entire length. A good metaphor for hominin interbreeding? Courtesy of Creative Commons. Photo: Greg O’Beirne.

We, Anatomically Modern Humans, are the result of all this evolution. We are nothing more than a mongrel species.

What a splendid, exhilarating thought.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 4 – Using your noggin

‘Us’ Part 5 – Feet and socks


[i] https://www.sciencedirect.com/science/article/abs/pii/S0047248417300866

And this from the Australian Museum: ‘Most scientists that accept H. floresiensis as a legitimate species now think its ancestor may have come from an early African dispersal by a primitive Homo species similar in appearance to H. habilis or the Dmanisi hominins. This means that it shared a common ancestor with Asian H. erectus but was not descended from it. Cladistic analysis supports the lack of a close relationship with H. erectus.

[ii] https://onlinelibrary.wiley.com/doi/abs/10.1002/evan.21863

[iii] Falk, Dean, et al. ‘The Brain of LB1, Homo floresiensis’. Science, 308, 242 (2005).

[iv] https://www.nature.com/articles/s41586-019-1067-9

[v] The first H. heidelbergensis fossils were found near Heidelberg in 1907.

[vi] Although this paper suggests the split between our two species might be found much further back … up to 800,000 kya or more!

[vii] Recent research from scientists at Australia’s Garvan Institute of Medical Research reveals that southern Africa is home to the oldest evidence for AMH: ‘… to contemporary populations that represent the earliest branch of human genetic phylogeny.’ The date they arrive at is 200,000 years ago.

As well, a report in the February issue of Science describes how thousands of genome sequences were collected from modern and ancient humans to create a family tree. In the words of the report’s first author, Anthony Wilder Wohns, ‘ … we definitely see overwhelming evidence of the Out-of-Africa event … ‘

[viii] See Stringer, C. & Andrews, P. The Complete World of Human Evolution. London, 2011. P 140 ff for a discussion of the two main theories for the evolution of Home sapiens: ‘Multiregional’ and ‘Out of Africa’.

[ix] And now, besides DNA, they are using protein analysis to identify ancient hominins, most recently the first Denisovan found outside of the Denisova Cave in Siberia … on the Tibetan Plateau of all places! See https://www.nature.com/articles/s41586-019-1139-x, 16 May 2019.

[x] Very recently, H. sapiens remains were discovered in the Grotte Mandrin rock shelter in the Rhône Valley in France that date back 54,000 years ago, pushing back our species arrival in Europe by at leat 10,000 years from previous estimates.

[xi] Please watch this fascinating talk Svante Pääbo gave at the University of California in 2018 after receiving the Nierenberg Award for Science in the Public Interest. It goes into all of this in much more detail. As Pääbo points out in the talk, the DNA evidence indicates humans ‘have always mixed’.

[xii] https://www.theguardian.com/science/2017/nov/19/human-evolution-dna-revolution-mapping-genome

[xiii] See here and here.

[xiv] See Berger talk about this towards the end of this Nova documentary, the Dawn of Humanity.

04 March 2022: ‘Us’ Part 5 – Feet and socks

One foot in front of the other

Humans walk upright, gorillas and chimpanzees walk on all fours, resting their weight on their knuckles, and orangutans can do just about anything – they hang and swing by their arms from branches, sometimes with the help of their oddly-shaped feet, and on the ground they can walk either upright or on all fours.  The structure of the postcranial skeleton in all four animals is very different and reflects these locomotor patterns.  Non-human great apes have short legs and long arms, whereas we have very long legs. With the gorilla and chimpanzee it is the shortness of the legs that differs from humans, the arms being much more similar in length compared to the torso; only the orangutan has enormously lengthened arms.  When other great apes stand upright, their legs are straight from hip to ground, whereas humans are ‘knock-kneed’, as the thighs slope inward from the hip to the knee.  The pelvis is very different in appearance: in humans the hip bone (ilium) is low and very broad, but in great apes it is high and fairly narrow. In humans the great toe is long and stout and aligned with the other toes, but in great apes it is divergent from the other toes (less in the gorilla), and in the orangutan it is very short.

Courtesy of Creative Commons. Artist unknown.

In most great apes, the spinal column is more or less straight, but in humans the spine is curved into a double-S: the cervical (neck) vertebrae curve forward, the thoracic (chest) vertebrae curve backward, the lumbar vertebrae (those in the small of the back) curve forward again, the sacral vertebrae (which are fused together, and form the back wall of the pelvis) curve back again, and the coccyx (the partially fused vertebrae which are the tiny remnant of the tail) curves forward once more.  The ribs (which are very variable in number, but average 12 in humans and orangutans, and 13 in chimpanzees and gorillas) together form the thorax; in humans the thorax is barrel-shaped (narrow at the top, broad in the middle, narrower again at the bottom), whereas in great apes it is funnel-shaped (narrow at the top, and broadening towards the bottom).

All of these differences between humans and the other great apes are developments stemming from bipedalism. So why did humans adopt bipedalism? Well, walk with me and we’ll take a brief look at the major theories.

Doing a runner

There seems to be a growing consensus among many scientists that our ancestors evolved bipedalism for several reasons rather than one overriding factor. What many of the competing theories do agree on, however, is that rainforest giving way to savannah because of climate change around 7.0 – 5.0 mya was a strong influence. Grassland with only scattered trees and no closed canopy meant tree-climbing primates had much more open territory to cover. Walking on two legs freed hands to carry infants, food or tools, including weapons. Walking on two legs made us taller, meaning we could locate food, potential predators and safe havens from further away; it also made it easier to pick low-hanging ripe fruit from trees. Walking reduced the amount of body surface area we exposed to the sun while in the open.

Early morning on the savannah. The change in the landscape from rainforest to savannah between 7 mya to 5 mya probably helped kickstart bipedalism in hominins. Photo: Simon Brown.

Of course, in some circumstances some of these ‘advantages’ could become disadvantages. For example, although bipedalism meant we could locate a predator from further away, it also meant if it was looking in the right direction, a predator could see us from further away as well (and our chief predators – leopards, hyenas and lions – all have good eyesight, not to mention excellent hearing and sense of smell). On the other hand, when our ancestors became active hunters, our extra height gave us an advantage over prey animals, many of whom rely on their sense of smell rather than their eyesight.

Our genus has evolved to become a natural endurance runner, and through that a natural persistence hunter. Courtesy of Creative Commons. Photographer unknown.

More recently, one of the major arguments for the successful adaptation of bipedalism was that it is a much more energy efficient method of locomotion[i]. Whatever the arguments for or against all these hypotheses regarding the origins of walking, when it came to running there is no denying our bodies evolved to make us one of nature’s supreme endurance runners[ii]. This seems to have happened about two million years ago and was a real game-changer when it came to predating: our ancestors evolved into persistence hunters, able to wear down much larger animals such as kudu and oryx[iii]. Basically, humans ran their prey into the ground, and much of our body shape is particularly adapted to long-distance running.

In other words, the characteristics that make us superb walkers and runners are the characteristics that most set us apart from other great apes. As Chris Stringer and Peter Andrews write in The Complete World of Human Evolution, ‘at present … (bipedalism) is taken as the earliest adaptation by which we can recognise human ancestors in the fossil record.’[iv]

The odd-sock drawer

Now it’s time to deal with one of the most controversial species in the human lineage – Homo ergaster. This species was described by Colin Groves and Vratislav Mazák in 1975[v]. Since then, palaeoanthropologists are divided on whether H. ergaster is a distinct species, or a subspecies belonging to H. erectus, palaeoanthropology’s pin-up boy and all-purpose species.

Once they learned to walk, our ancestors just kept on walking. In fact, they walked right out of Africa, into the Middle East, then east into Asia and Sahul, north to Europe, and eventually across the Bering Strait and into the Americas. On the way they continued evolving into new species that seemed to interbreed with each other at every opportunity, creating yet more new species, and eventually discovering agriculture, television and the internet. And interestingly, it’s the use of technology that provides us one piece of evidence that H. ergaster and H. erectus were two different species.

But first, let’s talk more about bones, specifically those belonging to the original H. erectus, parts of which were first discovered 1891 by Eugène Dubois, a Dutch doctor working for the army in Java. In fact, he went to Java with the objective of discovering evidence supporting the theory that H. sapiens evolved in Asia, an idea most determinedly supported by German naturalist Ernst Haeckel. Haeckel had hypothesised that our species’ progenitor, which he names Pithecanthropus alalus, had evolved on Lemuria, a mythical continent that subsequently sunk beneath the Indian Ocean (thereby conveniently leaving no fossils behind to prove – or for that matter, disprove – his theory).

Eugène Dubois, discover of Homo erectus. Courtesy of Creative Commons. Photographer unknown.

Although Dubois had discovered ancient hominin fossils, he found little or no support among scientists in Europe that they amounted to anything significant. It wasn’t until Sinanthropus pekinensis was discovered in China over a quarter-century later that enthusiasm for Dubois’s discovery really picked up. In the early 1950s, Ernst Mayer reclassified both P. alalus and S. pekinensis as H. erectus[vi]. Since then, hominin fossils with roughly the same estimated brain size as H. erectus and aged between 2 million years old to just over 100,000 years old have been thrown in with H. erectus like differently coloured socks thrown into an odd-sock draw. It has become the species to have when you want to cover all of Africa and Eurasia and two million years of history.

In the early 1970s, for example, Richard Leakey and Alan Walker described two partial skulls found in Kenya as belonging to an African offshoot of H. erectus based on the fact that their calculated brain capacities (848 cc and 803 cc) were not dramatically smaller than that of some H. erectus skulls (around 950 cc), which is like arguing that since the Volvo S60 and the Volkswagen Passat have similar interior space, they’re both examples of a Toyota Camry.

However, in 1975, Colin Groves and Czech colleague Vratislav Mazák, after a comprehensive metric analysis of fossils from Koobi Fora, discovered they had uncovered a new species they names H. ergaster. Their argument was that there was no African version of H. erectus; further, Colin Groves believed that H. ergaster evolved in Africa and then migrated into Eurasia, eventually giving rise to H. erectus.[vii] The earliest dates for the new species goes back 1.9 million years[viii], as opposed to 1.6 million years (or 1.8 according to some estimates) for H. erectus, making H. ergaster the first truly human-looking hominin to stride the planet – tall, thin, decidedly bipedal, with a flatter face than its ancestors and an active hunter, fire-user and tool-maker.

KNMER 3733, possible cranium of a female Homo ergaster. Photo: Simon Brown.

Now, nearly fifty years after the initial paper by Groves and Mazák, a fierce debate still continues between those who think the two hominins are separate if linked species, or just subspecies. In common parlance, it’s a debate between splitters and lumpers.[ix]

But besides the obvious difference in the skull shapes of H. ergaster and H. erectus, another line of evidence convinces me that Colin was right in his opinion that we are talking about two species. This evidence involves tool making.

Out with the old, in with the new

Until the appearance of H. sapiens and H. neanderthalensis, stone age technology is divided into two broad and overlapping stages: Oldowan and Acheulean (sometimes called Modes 1 and 2). Oldowan technology was first discovered in the 1930s by Louis Leakey at the Olduvai Gorge in Tanzania. The oldest examples have been found at Gona in Ethiopia, and date back about 2.5 million years[x]. The technology seems to have spread very quickly, and recent discoveries have found stone tools in Jordan dated at 2.5 mya and China at 2.1 mya[xi]. This technology, the use of very simple flakes and rocks, had been developed before the appearance of H. habilis, possibly by Australopithecus garhi. Acheulean technology which started about 1.76 mya, is closely associated with the appearance of H. ergaster and involves more refined knapping and the development of specialised tools such as hand axes.

This doesn’t imply that Oldowan technology suddenly evaporated, and every hominin adopted the new style of knapping chert. In some places, Oldowan and Acheulean stone tools are found at the same site from the same period, suggesting that while H. ergaster or one of its descendants employed the improved technology, one of our cousins continued using the older method.  But it’s clear Acheulean technology obviously conferred a significant advantage over the old style. It didn’t take long for it to spread beyond Africa, either because H. ergaster itself started spreading beyond Africa, or because it spread by ‘word-of-mouth’: neighbouring hominis picked up on the new fashion of making tools and copied it. Acheulean tools appear in what is now India, for example, by 1.5 mya, and in Europe by about 900 kya.

Acheulean hand axes. Compare the careful knapping done here to the more primitive Oldowan tools illustrated in the previous post. Courtesy of Creative Commons. Photographer unknown.

However, Acheulean technology did not seem to reach Java, where our friend H. erectus resided.

Which presents lumpers with a problem. If H. ergaster is indeed nothing more than a subspecies of H. erectus, then fossil evidence suggests this single species arose in Africa before spreading throughout Eurasia. Yet if this is also the species that developed Acheulean technology soon after evolving, why didn’t the technology travel with them to the far east?

On the other hand, if we are talking about two species, then it’s quite possible for Acheulean technology to be developed by H. ergaster in Africa, spread slowly throughout Eurasia, but never quite reach the home of H. erectus in Java.

If this was in fact the case, it raises a more important question: even if we accept H. ergaster is a separate and earlier species than H. erectus. Does it necessarily follow that H. ergaster gave rise to H. erectus? What if the two species are cousins rather than mother and daughter?

This is something we’ll discuss in the next, and final, post of ‘Us’.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 4 – Using your noggin

‘Us’ Part 6 – Kith and kin


[i] https://www.newscientist.com/article/dn12269-walking-on-two-feet-was-an-energy-saving-step/

But then again, see https://www.sciencedirect.com/science/article/abs/pii/S0047248412001443

[ii] https://www.nature.com/articles/nature03052

[iii] https://en.wikipedia.org/wiki/Persistence_hunting

[iv] Stringer, C. & Andrews, P. The Complete World of Human Evolution. London, 2011. P 19.

[v] https://www.irmng.org/aphia.php?p=taxdetails&id=10031853

[vi] According to Britannica, Mayr did this in 1944. But see Bernard Wood who writes it was Franz Weidenreich who first came up with the idea in 1940:

‘(He) was the first to suggest that the genus Pithecanthropus should be subsumed into Homo, and in the same paper he proposed that fossils recovered from what was then called Choukoutien (now called Zhoukoudian), which were initially assigned to Sinanthropus pekinensis,26 should also be transferred to Herectus.’

[vii] From the Australian Museum:

‘A growing number of scientists have redefined the species Homo erectus so that it now contains only east Asian fossils. Many of the older African fossils formerly known as Homo erectus have now been placed into a separate species, Homo ergaster and this species is considered to be ancestral to Homo erectus. The redefined Homo erectus is now generally believed to be a side branch on our family tree whereas Homo ergaster is now viewed as one of our direct ancestors. ‘

[viii] Oldest fossil dates according to the Australian Museum for H. ergaster here and for H. erectus here. Recent work reported in the journal Science may push the dates even further back, between 1.95-2.04 mya (although in this paper the discussed specimen is describe as preserving ‘characters that align it morphologically with H. erectus sensu lato (including Homo ergaster)’. Go figure.

[ix] For a fuller description of the often heated debate about what makes a species, see here.

[x] Stringer, C. & Andrews, P. The Complete World of Human Evolution. London, 2011. P 208.

A new kind of stone age technology – Lomekwian – has been suggested after the recent discovery of stone tools at Lomekwi that predates Oldowan by more than 700,000 years. See the previous post for more details.

[xi] https://onlinelibrary.wiley.com/doi/abs/10.1002/evan.21863

28 February 2022: ‘Us’ Part 4 – Using your noggin

It’s not how big it is, but what you do with it

Forgive the pun, but for decades it seemed a no-brainer that the chief qualification to be considered human was the size of your brain. Obviously, it had to be a of a certain respectable capacity, never quite defined, but a degree or two larger than a chimpanzee’s organ was a good start. There was some embarrassment when it was determined that the average brain capacity of Homo neanderthalensis was larger than our own[i], but that misgiving aside it was assumed that if not a directly comparative intelligence was a prerequisite, then certainly something within shooting distance.

One mistaken assumption here is between brain size and intelligence, something made very clear in recent years by the discovery of the stone tool-making H. floresiensis (with a brain the size of a chimpanzee). Recent work done on corvids, for example, suggests that ravens and crows possess a Theory of Mind[ii] – the capacity to imagine that another crow might have its own thoughts – which in turn suggested a reasonably developed sense of self-awareness, an emergent property traditionally associated with intelligence[iii].

Homo heidelbergensis had a brain around 1200 cc, well within the range of H. sapiens. Photo: Simon Brown.

Another mistaken assumption is that our larger brain size is extraordinary among our cousins, but average brain size has not increased dramatically in total capacity since H. heidelbergensis, a species that first saw light of day 600,000 years ago.[iv]

Indeed, Homo species sit comfortably on the line that matches a generic primate’s brain size to its body size. In other words, if you’re a primate, the bigger you are the bigger your brain gets. (This isn’t peculiar to primates, of course, and applies to many mammalian groups, eg rodents, elephants and aardvarks, but primates do have larger brains than mammals of similar body mass).[v]

Interestingly, there are three exceptions to this general rule, all three of which are closer to us genetically than any other primates: the orangutan, the chimpanzee and the gorilla. The orangutan falls just below the curve, the chimpanzee falls a little further, and the gorilla furthest of all. Extensive studies with chimpanzees and gorillas, however, show that both species are intelligent and self-aware enough to have developed a Theory of Mind.

Demonstrably, brain size is not irretrievably married to a set physical size, just as brain size is not irretrievably married to a set level of intelligence.

I know that you know that I know …

It does seem self-awareness, or sentience, is an emergent property of intelligence.[vi] In other words, as an animal increases in intelligence, at some point it will become aware of its own existence. This is more than simply being able to experience pleasure or pain, but the ability to experience life subjectively.

Objects found with the remains of H. floresiensis strongly suggests they made stone-age level weapons and tools.[vii] Obviously, such complex toolmaking suggests an active intelligence capable of learning new skills and – as importantly – passing those skills on to the next generation. This in turn suggests H. floresiensis possessed a language; if not a spoken language such as ours, with a huge vocabulary and complex rules of grammar, then at least some way to transmit a limited amount of information effectively and efficiently.

Evidence also exists that H. floresiensis hunted and scavenged animals such as the dwarf stegodon, a kind of elephant. To be clear, a dwarf elephant could still grow to more than two metres in height. For something the size of H. floresiensis to hunt stegodon strongly suggests they hunted in groups, which in turn strongly suggests their language was something more than a series of grunts.

With H. naledi, we are on somewhat less firm ground. Although they were larger-brained hominins than H. floresiensis, the remains of at least 15 individuals from the Rising Star Cave in South Africa were discovered without any tools or evidence of tool making. However, the species possessed a hand not dissimilar to our own, and would probably have been capable of tool-making. It is hard to imagine a hominin species living in Africa in this period, between 236,000 and 335,000 years ago, and not picking up the skill from one of the other hominin species occupying southern Africa at the same time (including, quite possibly, our own).

The Rising Star Cave in South Africa, where the fossils of several Homo naledi were discovered in the Dinaledi Chamber. H. naledi almost certainly would have needed fire – and a great deal of determination – to find their way to the chamber from its entrance. Courtesy of Creative Commons.

Furthermore, palaeoanthropologist Lee Berger, who led the expedition to recover the H. naledi remains from the Rising Star Cave, believes bodies were intentionally and repeatedly deposited there. This implies two things: first, ritual behaviour on the part of the species, and second, that they were capable of making fire, since the chamber the bones were discovered in is at the end of a long, dark, dangerous and narrow route.[viii]

I may not know much about art, but …

In his influential work on human development, The Ascent of Man, Jacob Bronowski wrote, ‘Man is not the most majestic of creatures. Long before the mammals even, the dinosaurs were far more splendid. But he has what no other animal possesses, a jig-saw of faculties which alone, over three thousand million years of life, make him creative. Every animal leaves traces of what it was; man alone leaves traces of what he created.’[ix]

Whether or not Bronowski used the term man to mean, specifically, H. sapiens, or more broadly to mean humans in general, we know that our cousins left behind more than traces of what they created. We have hundreds of stone tools, the tailings and debris of stone-tool manufacturing, and even examples of art.

I would suggest this equates to culture.

But what if there are no physical signs of culture, does it mean culture does not exist? It is often fallacious to argue that absence of evidence is not evidence of absence, but in cultural endeavours such as language or dance, there can be no evidence before the invention of writing and art.

Vervet on the lookout for predators. Photo: Simon Brown.

Simple language can be identified in many primates. Vervet monkeys, for example, have distinct calls for each of their four main predators: pythons, baboons, leopards and eagles. But we will probably never know which human species was the first to communicate with what we would describe as a complex language, one capable of conveying abstract thought. Vervet monkeys may be able to tell their fellows that a leopard is approaching, but they cannot say the leopard is hiding behind that bush or over that hill, let alone discuss the rights and wrongs of predation.

We see culture operating among our more social hominid cousins, the chimps and gorillas. Long-term field studies suggest, for example, that cultural variation exists among different chimpanzee groups, including differences in grooming, courtship and tool usage.[x] It is the ‘combined repertoire’ of chimp behaviours that is significant, demonstrating a range of cultural behaviours, a diversity that once was attributed only to our own species.

It is with the application and development of tool usage that the first signs of a distinct ‘human’ culture are found in palaeoanthropology. Whereas chimps and some bird species, like humans, use tools made from plants to gather food or built shelter, humans are the first animals to make stone tools, improving on the original material through knapping. Later, humans combined stone with other material, such as wooden handles, to improve their effectiveness; in other words using tools to make better tools. Indeed, the making of stone tools was once considered the boundary marker between members of Homo and earlier genera. Since then, the boundary for stone-tool making has been pushed well beyond those species traditionally grouped under our own genus.

Oldowan stone age tools. Courtesy of Wikimedia Commons. Photographer: Didier Descouens.

The oldest crafted stone tools found so far are from Lomekwi in Kenya, dating back 3.3 mya[xi]. First discovered in 2011, they were probably made by a species belonging to either the Australopithecus or the Kenyanthropus genera. The tools were found in an area where Kenyanthropus platyops fossils had been found earlier.

But we have to wait more than 700,000 years before there is clear evidence of stone-tool making on a large scale, something we’ll cover in detail in a later post.

Eventually some hominins were not simply making stone tools: ‘The people who made the hand axes clearly had a specific shape in mind, and often went far beyond a purely utilitarian form in the care with which they produced them.’[xii] This is an example of humans crafting tools for aesthetic appeal, not just knapping to produce a sharp edge or a convenient grip.

Earliest example of art was created by Homo erectus 500,000 years ago. Courtesy of Creative Commons. Photographer unknown.

It is with H. erectus we find the first real example of an attempt at making what we would now call ‘art’. In 2014, scientists from Netherland’s Leiden University announced the discovery of a sea shell that had been engraved with a zigzag pattern 500,000 years ago, something identified by ANU scientist Dr Stephen Munro (who did his PhD under Colin Groves!). The shell was originally collected with others at the end of the 19th century by Eugène Dubois – the discoverer of H. erectus in Java – but had not been closely examined since the 1930s. The scientists demonstrated that not only was the engraving not the result of natural forces, but that the pattern was made by ‘a strong and skillful tool-maker’[xiii]. The new date pushed back the first evidence for art by 400,000 years.

With language we’re on much shakier ground. Research suggests the physiological requirements for language exist in at least some monkeys. The stumbling block seems to arise in the way the brain is wired[xiv].

Nonetheless, as noted above with vervet monkeys, a language with a basic vocabulary exists among many primate species. It has even been shown that different species of monkey may understand some of each other’s vocabulary[xv]. Some species have even developed a basic grammar[xvi].

Extensive work has been done on language among the great apes, both in the wild and under controlled conditions. For example, the remarkable success scientists have had teaching American Sign Language to Washoe, a chimpanzee, and Koko, a lowland gorilla, demonstrate their capacity to learn quite complex vocabulary, often using it to express emotions such as sadness.

Koko, a western lowland gorilla, with her pet cat All Ball. Courtesy of Creative Commons. Photographer unknown.

But even the most optimistic view of these experiments shows that non-human great apes never demonstrate a level of intelligence found in a three-year old human child. No chimpanzee or gorilla, for example, has ever used their acquired vocabulary to ask a question.[xvii]

There is genetic evidence to suggest that the development of the capacity for language accelerated in humans after we split from the chimpanzees some seven to eight million years ago[xviii], but precisely when humans started speaking in a way that we would describe as ‘human’ is unknown; it may never be known. As with so many things in evolution, the development of a complex language capable of expressing abstract thoughts almost certainly occurred along a spectrum.

Between them, language and craft handed humans a huge advantage in the evolutionary stakes. Making stone tools, for example, minimised our weaknesses, knives and hammers allowing us to make up for a lack of sharp claws and fangs. Later, bows and throwing spears made up for our lack of speed in the chase.

Language allowed us to magnify our strengths, especially the ability to learn new things and pass that learning on to succeeding generations.

Language, and culture generally, seems to be something we share with other members of our genus, and indeed, as they are presently classified, earlier genera.

In the next post we’ll talk about bipedalism and one of the most controversial of hominin species – H. ergaster.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 5 – Feet and socks

‘Us’ Part 6 – Kith and kin


[i] Specifically, larger on average than the modern human brain, although the brains of archaic H. sapiens were in fact comparable to H. neanderthalensis. The following excerpt is from here.

‘To measure fossil brain volume, anthropologists have traditionally filled skulls with beads or seeds, and dumped the contents into a graduated cylinder (a precise measuring cup). They’ve also submerged molds of skulls into water, measuring the volume displaced. Today CT (computed tomography) scanning methods offer more accurate (and less-messy) measurements, but much of the data in textbooks and other references was collected the old fashioned way.

‘Based on these values, we can confidently say fossil Neanderthals and modern humans from the same time period had similar brain sizes. Twenty-three Neanderthal skulls, dating between 40,000 and 130,000 years ago, had endocranial volumes between 1172 to 1740 cm3. A sample of 60 Stone Age Homo sapiens ranged from 1090 to 1775 cm3.’

[ii] https://www.nature.com/articles/ncomms10506

[iii] And there is now evidence that some birds, eg the Australian magpie, can demonstrate altruism. See here.

[iv] Modern H. sapiens have brains ranging between 1030cc-1620cc; judging from what fossil skulls we have, the H. heidelbergensis brain averaged around 1250cc. See https://australian.museum/learn/science/human-evolution/homo-heidelbergensis/

[v] For a great explanation of how all this works, check out The Human Advantage by Suzana Herculano-Houzel. It’s a great read! See https://mitpress.mit.edu/books/human-advantage

[vi] For example, see https://www.frontiersin.org/articles/10.3389/fnins.2020.548071/full and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304239/

[vii] http://www.nature.com/nature/journal/v532/n7599/full/nature17179.html

[viii] https://elifesciences.org/articles/24234

[ix] Bronowski, J. The Ascent of Man, London, 1976 (BBC Edition), p 42

[x] https://www.nature.com/articles/21415

[xi] https://www.nature.com/articles/nature14464

[xii] Stringer, C. & Andrews, P. The Complete World of Human Evolution. London, 2011. P 209.

[xiii] http://www.news.leiden.edu/news-2014/the-story-behind-the-discovery-that-turned-archaeology-on-its-head.html

[xiv] http://www.sciencemag.org/news/2016/12/why-monkeys-can-t-talk-and-what-they-would-sound-if-they-could

[xv] http://rspb.royalsocietypublishing.org/content/282/1807/20150265

[xvi] http://www.pbs.org/wnet/nature/clever-monkeys-monkeys-and-language/3948/

[xvii] Some scientists argue that Koko’s language skills were a result of ‘operant conditioning’, whereas others state she was indeed capable of simple questions. See Wikipedia entry here for more information and references.

[xviii] https://www.nature.com/articles/nature01025

24 February 2022: ‘Us’ Part 3 – The devil in the detail

Species are what, exactly?

Most of us did some biology at school, and most of us came out with the idea that species are groups of populations that cannot interbreed. When we’re reminded of mules, which are the offspring of horses and donkeys, we think ‘Ah, but they are sterile, aren’t they?’ Almost invariably, although there have been a few cases of fertile mules, but when cattle and bison interbreed, while the male offspring are sterile, the female offspring are fertile. All the big cats can also mate with each other, producing hybrids (where the female is fertile), and in the case of the leopon, the hybrid between a leopard and a lion, even the male might be fertile.

A tigon: hybrid from tiger father and lion mother. Because it’s a male, it would be infertile. Courtesy of Creative Commons. Photographer unknown.

Now that we can trace the ancestries not only of individual people, but whole populations and whole species, through DNA, it turns out that there has been a whole lot of successful – that is, fertile – interspecies breeding in the past. And it sometimes turns out that different species even today may interbreed with their neighbours on the quiet. For example, the primatologist Kate Detwiler discovered that two species of small monkeys in Tanzania’s Gombe National Park, the red-tailed monkey (Cercopithecus ascanius) and the blue monkey (Cercopithecus mitis), are found living in separate troops in some of the forested valleys, but in other valleys interbreed – in fact, in one or two valleys the monkey population consists entirely of hybrids.[i]

The idea that different species don’t interbreed is simply not true. They may not do so usually – but that is another thing entirely. We cannot use non-interbreeding as a criterion for species.

How then, can we define species?

George Gaylord Simpson. Courtesy of Creative Commons. Photographer unknown.

For over 150 years now, the basic guiding principle of biology has been evolution – so the question we should be asking is what is the evolutionary status of species? The palaeontologist George Gaylord Simpson (1902-1984) suggested in 1961 that the essence of species is that they are evolutionary lineages. He got little reaction at the time because his colleagues largely were hung up on the non-interbreeding criterion, but from the late 1990s his insight has been more and more appreciated. The best way to recognise an evolutionary lineage is, quite simply, that it differs from other evolutionary lineages. Horses and donkeys differ consistently and therefore represent two separate evolutionary lineages, and are therefore two different species. Similarly, blue monkeys and red-tailed monkeys differ consistently and therefore constitute separate evolutionary lineages, and again represent two different species.

Stumptailed macaque. Courtesy of Creative Commons. Photographer unknown.

            If there are whole populations which consist of hybrids between two species, then what? Sometimes hybrid populations remain isolated for a good length of time and become homogeneous – and a new species is born. At least one species of monkey, the stumptailed macaque (Macaca arctoides) of mainland Southeast Asia, is thought to have arisen about 1 million years ago from a hybrid population between two other species.[ii]

For a more detailed discussion about the arguments about how to define species, especially the contest between the Biological Species Concept and the Phylogenetic Species Concept, go here.

So … generally speaking, what are genera?

So what about genera, families and other taxa?

While the taxa at both ends of the ranking are pretty straight forward – ‘species’ is eminently useful, and ‘domain’ and ‘kingdom’ are irresistibly sensible – all the ranks in between can get awfully confusing. And they are actually rather arbitrary. When, for example, do we know that a group of organisms constitute a genus rather than a family?[iii]

One simple solution would be to organise those in-between ranks chronologically. In other words, the order Primates would include all those monkey, ape and human-like species which existed from the Palaeocene epoch, and the family Bovidae would include all those antelope, buffalo and cattle, and sheep and goat species which existed from the early Miocene epoch.

This is an idea first forcefully proposed by German biologist Willi Hennig (1913-1976), considered the founder of cladistics – or ‘phylogenetic systematics’ if your thesaurus is turned on.

Willi Hennig. Courtesy of Creative Commons. Photographer unknown.

In 1966, Hennig proposed linking the taxonomic rank of a clade to its time of origin. He argued that if taxa are to mean anything they must represent monophyla – that everything in that group must be descended from a common ancestor. He also argued that taxa had to be characterised chronologically.

Hennig was an entomologist and realised while many genera of insects separated from one another tens of millions of years ago, the genera of mammals and the genera of birds separated more recently.

The idea was taken up by American scientist Morris Goodman (1925-2010), one of the founders of molecular genetics. He set about constructing a consistent scheme for the group of mammals about which he was most familiar – the primates. In 1997, he suggested that a reasonable time depth for a primate genus would be seven million years, partly because this would do the least violence to the presently accepted system of determining genera.

This is where Colin Groves enters the story.[iv]

Colin surveyed many of the mammalian genera that taxonomists had recognised and found that most had separated from each other less than seven million years ago. Subsequently, he proposed that five million years was a more appropriate time depth for mammalian genera: the Miocene-Pliocene boundary.

Furthermore, Colin suggested that the taxonomic rank of ‘family’ had a time depth of 24 million years, separate families splitting around the time of the Oligocene-Miocene boundary. Going up one more ranking, the different ‘orders’ separated around the time of the Cretaceous-Tertiary boundary (the famous K-T boundary that marks the arrival of the asteroid that wiped out non-avian dinosaurs[v]).

Colin Groves. Photo: Simon Brown.

One of the consequences of Goodman’s proposals for palaeoanthropology is that most if not all members of the human lineage would belong to a single genus. Indeed, using his original suggested time depth of seven million years, Goodman even included chimpanzees into Homo. Overall, the later modifications devised by Colin play less havoc with the established order, but they would still require that most human fossils be placed in the same genus as ourselves.

Arguments about when hominins evolved into a genus that can be described as wholly human traditionally revolved around the relative importance of different physical characteristics: brain size, dentition, general morphology (body size, especially the extent of sexual dimorphism), and primary form of locomotion.

Other more controversial factors sometimes taken into consideration include tool-making, art and other signs of culture, and evidence of community living.

For example, some experts such as Ian Tattersall, curator emeritus with New York’s American Museum of Natural History, argue that the cranium of Homo floresiensis (the Hobbit, see here, here and here) is too archaic for it to be included in our genus.

This leads us to our second, and more controversial opinion: following Colin’s plan our genus would include not only H. floresiensis but even older and more archaically featured species traditionally belonging to other genera, such as the Australopithecines, for example, which include the Taung Child and Mrs Ples.

Colin argued that the Miocene-Pliocene boundary more or less corresponds to the onset of the only characteristic definitely belonging solely to our genus and to no other genera among the great apes – bipedalism. By bipedalism we mean that the main form of locomotion is walking or running on two legs, with the big toe aligned with the other toes in the foot.[vi]

Accepting this argument has two major implications and several minor ones for palaeoanthropology. First, and least controversially, brain size is not by itself a qualification for membership of the human genus. Specifically, a small brain does not exclude membership.

Homo naledi. Courtesy of Creative Commons. Photographer unknown.

The discovery of H. floresiensis and H. naledi in the 21st century, with an average brain size of around 420 cm3 (about the size of a modern chimpanzee) and 500 cm3 respectively, clearly demonstrates that many humans were small brained compared to H. sapiens but possibly still capable of sophisticated tool-making and ritual behaviour.

Secondly, accepting a time criterion in determining what species do and do not belong to the genus Homo means that strictly morphological traits are no longer intrinsic in determining human status.

In the next post, we’ll look in more detail at brain size, culture and bipedalism as criteria for determining whether or not a species is human.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 2 – Burdalone

‘Us’ Part 4 – Using your noggin

‘Us’ Part 5 – Feet and socks

‘Us’ Part 6 – Kith and kin


[i] https://phys.org/news/2018-04-genetic-evidence-ongoing-distinct-species.html

[ii] https://pubmed.ncbi.nlm.nih.gov/29614345/

[iii] Sigwart, J., Sutton, M. D., & Bennett, K. (2017). ‘How big is a genus? Towards a nomothetic systematics’. Zoological Journal of the Linnean Societyhttps://doi.org/10.1093/zoolinnean/zlx059

[iv] Groves, Colin. ‘Time and taxonomy’. Ludus Vitalis. Vol IX. No 15. 2001.

& Groves, Colin. ‘Speciation in hominin evolution’. African Genesis: Perspectives on Hominin Evolution. Ed Reynolds, Sally & Gallagher, Andrew. Cambridge University Press. 2012.

& Groves, Colin. ‘Current taxonomy and diversity of crown ruminants above the species level’. Zitteliana B32, International Conference on Ruminant Phylogenetics, ed. Prof. Dr G Worheide, Bavarian State Collection for Paleontology and Geology, Munich.

[v] Now also sometimes referred to as the Cretaceous-Palaeogene (K-Pg) boundary.

[vi] For a more detailed explanation, see here.

21 February 2022: ‘US’ Part 2 – Burdalone

‘Burdalone’ is an old Scottish word meaning the last bird in the nest, the one left when all the other chicks have flown or all the other chicks have died. It’s a sad and lonely word, and perfectly describes Homo sapiens.

When one of the first members of our own species studied the world around her, most of what she saw would be familiar to us today, whether from personal experience or from watching nature documentaries about Africa. Extensive grasslands dotted with acacias, watering holes and narrow rivers with crumbling banks, herds of large grazing animals such as wildebeest and zebra, black herons and lizards, secretarybirds and crocodiles, a lion pride or two, and our deadliest predators – a leopard and a pack of hyenas.

The south African Highveld, the kind of savannah our ancestors evolved in over four million years ago. Photo: Simon Brown.

What she also saw, and which none of us will ever see, is other groups of human beings that were not H. sapiens. Like our ancestor, they were striding on two legs and using their large brains and opposable thumbs to harvest nuts and berries, sometimes to hunt or scavenge for meat, and to fend off predators. They looked very similar to us, used tools, and some may even have created art and used language to talk to one another.

Around 350,000 years ago, at this stage the earliest date we know H. sapiens might have first strode the planet[i], there was no reason to think things would ever change.

But to say that we are human today is to say that we are members of a single worldwide species. This is extraordinary because for millions of years to be human meant that you could be a member of any one of a number of different but related species.

It should not be contentious to say that all members of the genus Homo are human – after all, this is what the Latin word ‘homo’ means – but it is contentious to suggest, as I will later in these posts, that all bipedal great apes are human.

But first it’s important to state that it’s currently impossible, and may forever be impossible, to finally determine when we stopped simply being hominids – that is, all the apes except for the gibbon – and became hominins as well – that branch of the hominids exclusive to us and our human cousins; this is the point at which chimpanzees went their way and we went ours.[ii] We may never know exactly when the thousands of physical and psychological characteristics that distinguish us from other great apes evolved; what we can be sure about is that almost of them were shared with at least some of our hominin ancestors.

We are so close to our cousins, genetically and historically, that making a distinction between whether or not they are human seems farcical. Indeed, the same argument can be made for any two species close to each other in the hominin line.

In 2005, British celebrity Alan Titchmarsh allowed professional make-up artists to disguise him as a Neanderthal; he then walked along the streets of London, almost completely ignored by everyone.[iii]

Homo sapiens or H. neanderthalensis?
Courtesy of Creative Commons. Photographer unknown.

At some point we need to demarcate between those species we consider human and those we consider pre-human, and to date the only specific marker that distinguishes all of us from all of them is bipedalism, not some arbitrarily determined measurement of brain capacity, morphology or dentition.

As well, research into the workings of the human brain, and into animal intelligence generally, has thrown into doubt those psychological characteristics we traditionally considered to be peculiarly human, characteristics that made us special and put us above the rest of the animal kingdom. Once upon a time, we were considered the only animal to make tools, then the only animal to make tools and smile, then the only animal to make tools, smile and do handstands.

It’s similar to a town building a bridge and claiming it’s the only bridge in the world, only to discover that a nearby town has one as well. So the first town now claims it’s the only single-span bridge in the world, until it learns there is a another single-span bridge in the next county. The first town now claims it is the only single-span bridge in the world with green arches, and so on, every new definition increasingly trivialising what makes its bridge special.

There is strong evidence that intelligence has arisen many times in the animal kingdom: in primates, cetaceans, elephants, larger carnivores such as dogs, hyenas and the big cats; birds, particularly corvids and parrots; and some molluscs such as octopuses and possibly squids.

There is also growing evidence that self-awareness and even a theory-of-mind[iv] exists in other primates such as chimpanzees and some birds such as crows.

There is growing evidence that animals other than humans, such as chimpanzees, have a Theory of Mind. Courtesy of Creative Commons. Photographer unknown.

So what are the characteristics that separate humans from our nearest living relatives, the chimpanzee and bonobo?

Before we answer that, we have to talk taxonomy and cladistics – how scientists classify living things.

Life is a spectrum

In his book The Vital Question, biochemist Nick Lane writes that ‘the distinction between a “living planet” – one that is geologically active – and a living cell is only a matter of definition … Here is a living planet giving rise to life, and the two can’t be separated without splitting a continuum.’[v]

Different scientists may employ different markers or waypoints in determining the start of life on Earth, all of which are subject to controversy and disagreement, but the truth is that there is no precise point in time when anyone could claim that a given chemical process for the first time was created by life rather than geology; it would be an arbitrary decision.

The same principle applies throughout evolution. There is no precise point in time where we can say fish gave rise to amphibians or basal reptiles to dinosaurs.

Changes in life brought about by evolution through natural selection isn’t episodic, it’s a spectrum.

But evolution does present a handful of events when with some certainty we can say a new direction had begun – a direction with significant ramifications for all life that follows.

The first of these, and covered in some detail in The Vital Question, concerns the creation of the eukaryotic cell: a morphologically complex cell that contains a separate nucleus and mitochondria, each surrounded by a double membrane. As far as we know this remarkable event occurred only once in all history[vi]. An archaeon, a single-celled prokaryote, absorbed another kind of prokaryote – a bacteria – and instead of consuming it established a symbiotic relationship.

The eukaryotic cell – morphological complexity derived from the synthesis of two prokaryotes, an archaeon and a bacterium. After the creation of life itself, this synthesis is perhaps the most significant event in the history of our planet. Courtesy of Creative Commons.

At some point later in history, some of the descendants of that first complex cell started a symbiotic relationship with a second prokaryote invader, creating chloroplasts and starting the line that would eventually lead to plants and green algae.

More recently, the arrival of the first human was an event with tremendous ramifications for all life on earth.

But when did this happen?

The king of Spain did what?

Before we go any further, we need to talk about a subject that normally works like a sedative on anyone not interested in taxonomic detail: the organisation of the taxa themselves.

I promise to keep this short and to the point, but it’s important to cover because we need to reconsider how and where our human family fits in with other living thing. And, of course, when it all happened.

Mnemonics are as much a part of school science classes as microscopes and Bunsen burners. For example, one mnemonic frequently used in the last century for memorising the different taxonomic ranks was ‘King Philip Came Over From Great Spain’, a mnemonic for the main taxa in the Linnaean system:

Courtesy of Creative Commons.
  • Kingdom,
  • Phylum,
  • Class,
  • Order,
  • Family,
  • Genus, and
  • Species.

Taxonomic ranking has been around for as long as humans have been curious about the natural world, but the above ranking developed from a system introduced by the Swedish naturalist Carl Linnaeus in the 18th century. He wanted to organise living things so their biological relationship to each other was made very clear. He did this by using shared characteristics to lump things together.

For example, these days all animals with fur, warm blood and that suckle their young with milk are put into one group, the class called mammals. The mammals themselves are grouped together with all animals with a backbone to form a phylum called the chordates. The chordates and animals without a backbone are thrown together into a kingdom called Animalia. More formally, taxa – the collective noun for the rankings – sharing a more recent common ancestor are more closely related than they are to taxa which share a more remote common ancestor: in other words a wombat is more closely related to a dog than it is to a crocodile, and more closely related to a crocodile than it is to a flatworm.

Linnaean taxonomy also introduced the binomial, the familiar two-name identifier used in science to classify an organism at the most detailed commonly used level, that of species. Homo sapiens, for example, is the binomial for human beings, just as Panthera leo is the binomial for lions and Quercus robur is the binomial for the English oak. The first word is the genus (plural genera), the second the species.

Taxonomy is a lovely idea, and appeals to anyone who thinks good old common sense is all you need when sorting bookshelves and tidying kitchen cupboards. For over two hundred years it was regarded as an almost fool-proof system: a place for every living thing and every living thing in its place.

But our knowledge of the natural world is not like that of our kitchen. Like the natural world itself, it is messy, chaotic, growing and constantly evolving.

In 1990, American microbiologist Carl Woese (1928-2012) suggested a new step was needed at the top of the taxonomic ladder to reflect the discovery of a whole branch of life whose existence was never suspected until the 1970s. The archaea, single-celled prokaryotes, were long thought to be a kind of bacteria, but work by Woese and other scientists revealed they are as chemically different from bacteria as we are.

The commonly accepted taxonomic ranks now start with ‘domain’, leaving us with cumbersome and self-defeating mnemonics such as ‘Determined, Kind People Can Often Follow Ghostly Screams’ or ‘Do Kings Prefer Chess On Fridays, Generally Speaking’.

Domain isn’t the only extra rank added over the decades. We also have ‘subfamily’, ‘tribe’, and sometimes ‘subtribe’, ‘subgenus’ and ‘subspecies’, and that’s just in the field of zoology.

In the story of ‘Us’ we’ll be dealing mainly with genus and species, and in the next post we’ll discuss what makes up both taxa.

Other posts in this series can be found here:

‘Us’ Part 1 – Out of Africa

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 4 – Using your noggin

‘Us’ Part 5 – Feet and socks

‘Us’ Part 6 – Kith and kin


[i] https://simonbrown.co/2017/10/07/07-october-2017-new-evidence-suggest-we-are-much-older-than-300000-years/

[ii] Some palaeoanthropologists include chimps and bonobos in the hominin. Rather than outlining all the arguments for or against, I’ll err on the side of caution and include only our immediate family in the hominins.

[iii] Titchmarsh did this in the wonderful natural history series The British Isles: a Natural History. See https://www.bbc.co.uk/programmes/b01fkhdx.

[iv] This is the ability to attribute mental states similar to your own to other members of at least your own species and possibly other species as well.

[v] Lane, Nick; The Vital Question; London, 2015; p 27.

[vi] This may have happened a second time. A single-celled organism with a nucleus, and possibly mitochondria, dubbed Parakaryon myojinensis, was retrieved a few years ago from the foot of a sea creature found off a coral atoll not far from Japan.

The main difference between P. myojinensis and all other eukaryotes is that its nucleus and mitochondria are surrounded by a single membrane instead of a double one, and its DNA is stored in filaments (as in bacteria) suggesting it is the result of a different line of evolution from all other eukaryotes. Indeed, there is some argument as to whether it is a true eukaryote at all. The only thing that can be said with some certainty is that it is definitely not a prokaryote.

No other example of this creature, or anything similar, has since been recovered. Nonetheless, when it comes to science, hope springs eternal …

See here for more information.

18 February 2022: ‘Us’ Part 1 – Out of Africa

It’s us and us, not us and them

This and the following five posts will be about Us. Not Uncle Sam or Ultra Sound or Ultimate Spas. Not you and me. But all of Us. Every single human alive today and every single human who has existed in the past. And by every human I mean every member of the genus Homo, and every member of the genera Australopithecus, Kenyanthropus and Paranthropus, a lineage that stretches back nearly five million years in the past and is still going strong today.

I considered another title for this series of posts – ‘Mongrel’ – because Homo sapiens are mongrels. I don’t mean in the way an Australian might call you a ‘mongrel’ if you rear-end his ute or support a different footie team, but in the sense that we are animals of mixed breeding.

Colin Grove. Photo: Simon Brown

I want to write about the revelation made by palaeoanthropology over the last 25 or so years that Anatomically Modern Humans (AMH) have no single direct ancestor. The different species that gave rise to us bred with each other again and again, cross-pollinating over millions of years. We are, each and every one of us a mulatto, a crossbreed, a cafuzo, a zambo … in short, a mongrel. This is something for us to crow about. We are the beneficiaries of millions of years of striving, surviving and thriving by many other members of our hominin tribe. Having said that, recognising that we owe our existence to a plethora of species and not to one single predestined or divinely sanctioned line of descent, may also help us shed our belief in the exceptionalism of H. sapiens.

These posts are also a way for me to record a project I long dreamt of doing and eventually started some six years ago but can no longer complete, a book about hominin evolution I was writing with my friend, the late Colin Groves[i]. I cannot write that book without Colin –  his knowledge and experience were unique even in the rather rarefied circle of palaeoanthropology – but what I can do is finally record as faithfully as possible some of his ideas about hominin evolution.

To start with, I’d like you to meet a small child. A child named Taung.

Darwin was right

The child first came to attention in 1924 when it’s tiny skull was discovered by Raymond Dart in one of two boxes of tufa and sandstone debris he received as he was dressing to attend a wedding as best man.

Dart, an Australian doctor and anatomist, had only recently taken up the post of professor at the University of Witwatersrand in Johannesburg, and had spread the word he was interested in any fossils his students or acquaintances might uncover to help stock his fledgling laboratory. In this case, the debris was from a limestone quarry in Taung, a small mining town in South Africa’s Northwest Province.

When the boxes arrived he hurriedly inspected them. In the second box he saw something that changed his life and the history of palaeoanthropology.

In his own words, a thrill of excitement shot through him.

‘On the very top of the rock heap was what was undoubtedly an endocranial cast or mold of the interior of the skull. Had it been only the fossilised brain cast of any species of ape it would have ranked as a great discovery, for such a thing had never before been reported … a brain three times as large as that of a baboon and considerably bigger than that of an adult chimpanzee …

Cast of Taung child. Photo: Simon Brown

‘But was there anywhere among this pile of rocks, a face to fit the brain? I ransacked feverishly through the boxes. My search was rewarded, for I found a large stone with a depression into which the cast fitted perfectly … Here I was certain was one of the most significant finds ever made in the history of anthropology.

‘Darwin’s largely discredited theory that man’s early progenitors probably lived in Africa came back to me.’[ii]

Indeed, Dart’s discovery eventually switched the focus of palaeoanthropology’s search for the origin of our species from Eurasia to Africa, an origin Charles Darwin had predicted in The Descent of Man in 1871.

Using his wife’s knitting needles, it took Dart weeks to separate the Taung Child (Taung 1) from its breccia matrix. The paper[iii] he wrote about the discovery appeared in Nature in early 1925, and in that paper he named the specimen Australopithecus africanus, Africa’s southern ape.

Raymond Dart with the skull of the Taung child. Courtesy of Creative Commons. Photographer unknown.

At first, the scientific establishment reacted negatively to Dart’s hypothesis that the Taung Child represented an ancestor of modern humans. Heretofore it had been believed humans must have evolved in Europe or Asia, a belief reinforced with the discovery of H. neanderthalensis in 1829 (but not recognised as a different species from us until 1856) and H. erectus in Java in 1891 (a story we’ll come back to later in this series of posts).

Over the following decades, however, the number and diversity of fossils uncovered in southern and eastern Africa have overwhelmingly supported the ‘Out of Africa’ hypothesis for human origins.[iv]

The Taung Child itself was thought to be about three years old when it died. Not only was its life short, it ended violently. In 2006, the University of Witwatersrand’s Lee Berger wrote that marks in the Taung Child’s eye sockets and on its skull suggested it was probably killed by a large bird of prey.[v]

Even though it was the first described member of the genus, it turned out A. africanus was not its oldest member, and may not even have been one of our direct ancestors.

Meet the great-great-great-grandparents

At the risk of making a bad rhyme, exactly what does it mean to be an Australopithecine?

This is a matter of debate. Some scientists merge a chronologically older primate genus, Ardipithecus, with Australopithecus, to make the subtribe Australopithecina. Others leave out Ardipithecus, and include Paranthropus and Kenyanthropus with the Australopithecines. While they’re at it, some scientists consider Australopithecines to be a member of the human family, while others think the family starts much later – with the first species in the genus Homo.

It gets very confusing very fast, especially since every new discovery – and over the last 25 years there have been many of those – seems to generate a new species and subsequently a new debate of what it means to be human, hominin, or hominini (generally accepted to be humans plus chimpanzees). Or for that matter, what should be included in the genera Australopithecus, Homo, Paranthropus and so on and so forth.

For the sake of these posts, I’m assuming at this point that Australopithecines are fine and upstanding members of our human family. Great-great-great-grandparents (or cousins to the nth degree), in a manner of speaking. At a later point  I’ll be examining more deeply what makes a genus … but we’ll paddle that delta when we get to it.

Australopithecus anamensis: the first human? Courtesy of Creative Commons. Photographer unknown.

The oldest species belonging to this genus is A. anamensis[vi], kicking off just over four million years ago (mya). Other Australopithecines include A. garhi, A. afarensis (Lucy is probably the most famous example of this species, if not the most famous human fossil of all), A. bahrelghazali, A. deyiremeda, A. prometheus and A. sediba. A. sediba is the last known of the genus as well as the most recently discovered[vii], existing as recently as 1.8 mya, making it a contemporary of one of our ancestors, H. ergaster.

Over the two million plus years the genus existed, cranial capacity jumped from around the 360cc mark (slightly smaller than the average for a chimpanzee) to nearly 440cc, an increase of over 20%.

The Australopithecines are generally thought to have given rise to our genus around 2.4 mya. Occasionally one Australopithecine or another is nominated as materfamilias, but the truth is no one really knows which species – if any of those so far discovered – gave rise to our side of the family. As well, there is constant toing and froing about how many species there actually are (and as we’ll see the same toing and froing goes on in discussions about the members of our own genus).

In the next post I’ll discuss what lays at the heart of all of these debates: the big question, a question that may never be satisfactorily answered.

What makes a human … well, human?

Other posts in this series can be found here:

‘Us’ Part 2 – Burdalone

‘Us’ Part 3 – The devil in the detail

‘Us’ Part 4 – Using your noggin

‘Us’ Part 5 – Feet and socks

‘Us’ Part 6 – Kith and kin


[i] For a full obituary, refer to the ANU’s Life Celebrations.

[ii] Dart, Raymond A. with Dennis Craig, Adventures with the Missing Link, London 1959.

[iii] https://www.nature.com/articles/115195a0

[iv] Including the discovery of Mrs Ples (STS 5) in 1947 by Robert Broom and John T. Robinson, an almost complete skull of A. africanus. (For more on Mrs Ples, see my earlier blog here.)

[v] https://www.semanticscholar.org/paper/Brief-communication%3A-predatory-bird-damage-to-the-Berger/15a0f813e5c4c978810bfee965fea1dcfdcb67f0

[vi] https://www.abc.net.au/news/science/2019-08-29/ancient-fossil-skull-found-in-ethiopia-fills-human-evolution-gap/11444130

[vii] In 2008, by Matthew Berger, the 9 year old son of University of Witwatersrand palaeoanthropologist Lee Rogers Berger.

16 February 2022: Laos

I’m writing this 50 days after moving to my new home in Vientiane, Laos. I’ve spent half that time sequestered from my fellow human beings: 14 days in quarantine on my arrival and a week later a further 11 days in self-isolation after contracting Covid 19 (and yes, from which I’m now recovered, thank you for asking).

Covid restrictions have pretty well eliminated tourism in Laos. This is part of an abandoned circus by the Mekong. Photo: Simon Brown

In the remaining 25 days I’ve managed to get a handle on my local area – a village called Ban Donepamai in the district of Sisattanak – but other than a couple of walks through the city centre and along the Mekong River, I can’t really claim to have seen much of Vientiane let alone Laos.

For a city in southeast Asia it’s remarkably compact and small, with a population somewhere between 800,000 and a million, depending on which source you ask (compared with the eight to nine million people inhabiting Hanoi or Ho Chi Minh City or Bangkok, or even the two million plus living in Phnom Penh).

The Mekong from my quarantine hotel room. Photo: Simon Brown.

But then Laos itself seems remarkably compact, with an area about the same as the state of Victoria. It looks like an apostrophe tucked in between Vietnam, Thailand, Cambodia, Myanmar and China, and is southeast Asia’s only landlocked country. The Mekong runs through it the way the Nile runs through Egypt, providing not just water, silt and a transport route, but character as well. The Mekong also acts as a border between Laos and Thailand, and one of the most pleasant things to do in Vientiane is listen to the sound of bells and gongs drifting across the river from Buddhist wats.

Laos, a socialist country embracing communism, is controlled by the Lao People’s Revolutionary Party. The party’s hand lays very lightly on us foreigners. From our point of view, life in Vientiane runs just as it does in Bangkok or Kuala Lumpur, if at a much slower pace. People own their own small businesses and mainly serve their local community. At this level at least, entrepreneurship seems to be encouraged. Everybody works, and everybody works hard.

Laos has plenty of its own wats, most beautifully decorated. Photo: Simon Brown.

I’m sure censorship exists at some level, but so far I’ve not encountered it personally, and AJ has been told that she can teach any text relevant to her course. The only sign that we’re living in a one-party state is the slightly Orwellian speeches given every morning over loudspeakers. None of the loudspeakers seem to be near us, so what we hear is a metallically-distorted monologue that drifts across our district like a mumbled prayer from heaven. The tone is completely even, without any emotion at all, as if all that was being delivered were aircraft boarding announcements or department store messages.

As AJ told me soon after she arrived six months ago, Vientiane in 2022 is probably what Phuket was like in 1982. In my limited experience, the locals are formidably polite and quite reserved. They are always bustling and busy, either riding their scooters to or from work, or selling vegetables, take-away food or lottery tickets from behind makeshift stalls or shop-houses (with the living accommodation on the second floor or out back). As in Thailand, thick skeins of electric cable are suspended above every main street, and the faint waft of sewage drifts up from drains.

Electric cables so thick birds lay nests in them. Photo: Simon Brown.

Traffic is only busy at peak times, but even then everyone drives under 50 kph. If there are traffic rules, they’re interpreted differently by every driver, but drivers – and by necessity, pedestrians – are courteous and patient. There are some big SUVs and pickups around, but most cars are small Toyotas, Hyundais and Kias, and all of these are vastly outnumbered by the swarm of motor scooters that cough around the streets like asthmatic beetles. It’s a marvel to watch scooter-drivers spend half their time looking where they’re going and the other half checking their mobile phones while using some internal radar to avoid collisions.

AJ and I will be here for at least two years, possibly three or more, so plenty of time to get to know the city and the country, starting with the Plain of Jars in a couple of weeks and Luan Prabang in April. And, of course, once Covid restrictions ease (fingers crossed), Vientiane will make a good base for visits to Vietnam, Cambodia, Malaysia and Thailand. Rainforest, rivers, rapids, monsoons and the world’s best food bar none. I have to say, it’s wonderful being back in the tropics.

12 February 2022: Interregnum

Apologies to everyone for the long interval between blogs.

Over the last six months, AJ and I moved from Johannesburg, South Africa to Vientiane, Laos, travelling via Australia to catch up with family and friends. Because of the Covid 19 pandemic and its associated lockdowns, quarantines and interrupted international travel, this has been a long, long process.

As well, I’ve been planning on working on a major piece on human evolution for some time, something I’ve slowly – and somewhat painstakingly – put together over the last 10 months. The piece is based on a book a friend, palaeoanthropologist Colin Groves, and I were writing together. From the short few chapters we managed to write before his death in 2017, from memories of our many weekly conversations, and from subsequent conversations with his wife Phyll and colleague Debbie Argue, that piece is now all but done. Although nowhere near as comprehensive as the book would have been, it’s still far too long to be viewed in one go, and will appear on this blog over the next few weeks in six sections.

Pha That Luang, Vientiane. Photo: courtesy of Creative Commons (photographer unknown)

Almost as a counterpoint to thinking about human evolution – dealing with relatively deep time – I’ve also been thinking about more recent human history, something spurred on by the pandemic, as well as crises in the Ukraine and the West’s fumbling, erratic handling of the inevitable rise of China. In the process, I came across this short piece I wrote for a workshop two years ago, arguing that the Napoleonic War (or perhaps more accurately, wars) were an essential ingredient in the making of the modern world.

So here it is, the first in what I hope is a much more regular series of blogs.

Napoleon and the modern world

I know … boring Euro-centric, male-centric, and military-centric history. Not really history at all, at least not as its understood these days. But still, the effects of this long conflict did two things that helped establish the world we now live in. First, it saw the creation of the most dominant modern European states. Second, it led to the rabid drive to colonise and exploit Africa.

The so-called First World War – the Great War of 1914-18 – was no such thing. The first true world war was the Seven Years War and occurred in the 1750s . It was fought in Europe, the Mediterranean littoral, west Africa, North America, southern Asia and the Philippines. The Napoleonic War was more of the same – the Second World War, if you like – but with extra countries thrown in and fought on a much more massive scale: bigger armies, bigger battles, greater civilian casualties and dislocation, and huge fleets of giant wooden ships sailing across all seven seas.

Artist: Paul Delaroche. Photo courtesy of Creative Commons (photographer unknown)

One thing you have to say for the Europeans, when they throw a party they make sure everyone’s invited, whether they want to join in or not.

The Napoleonic War involved military, economic and social mobilisation on a scale never seen before. Just two examples: between 1805 and 1813, Napoleon conscripted over 2,000,000 soldiers, and by the end of the war British national debt reached 200% of GDP.

Of course, Napoleon was a megalomaniac, but he also introduced dramatic reforms or consolidated reforms brought in by the French Revolution. Just three examples: the legal system, the Civil Code, influenced similar codes throughout Europe; the metric system is now used almost universally; and state-sponsored voyages of scientific discovery.

The Napoleonic War entangled the US in its first international conflicts: first against the French themselves (their previous ally during the American Revolution), and then, in 1812, against the British (their previous opponent during the American Revolution).

Prussia’s success resisting the French during the war cemented its position as the leading German-speaking country – a process begun 50 years before under Frederick the Great – leading to the creation of the German state itself under the direction of the Prussian Bismarck.

It’s hard to measure to the last centimetre or the last centime or the last degree Celsius the effect all of this had on the rest of the world. But when we talk about nation states, modern economies, science, art, culture and yes, even history, we are dealing with many ideas that had their origin or first great flowering during the Napoleonic era. When the wars were finally done, the continent of Europe – exhausted and battered and Napoleon sent to his last exile on St Helena – experienced nearly a century of peace, something that had never happened before. Instead European states competed with each other overseas, most dramatically in the race to colonise Africa during the 1800s.

The raw materials of the modern world can be found in early European colonialism and 18th century industrialisation, but for all its benefits we enjoy and all its crosses we bear, it was forged during the Napoleonic War.

15 April 2021: Growing up coloured in South Africa – an interview with Clinton Keet

‘The first time I heard the South African anthem was at funerals, and if the police heard you singing it they would fall on you.

‘Eleven years ago I sang the full South African anthem on South African soil for the first time. It was at a school soccer game in a Johannesburg school gym, and I felt immense pride. Now every South African knows the words.’

Clinton Keet, now a teacher at the very same school he first sang that anthem, says he cannot help smiling when he sees a sporting team representing South Africa and everyone in the stadium stands and sings the national anthem together.

Clinton Keet. (Photo: Simon Brown)

#

Clinton started life in a divided Cape Town, living in a district set aside for non-white South Africans. Through hard study, hard work and the support of his family, he became a teacher, and then an international teacher working in countries as diverse as Vietnam, Italy and China before returning to his native country, now freed from apartheid.

‘I was born in District 6, about the ten minutes walk from the centre of Cape Town. I don’t remember a lot about it – we were forced out of the district when I was about five years old. I remember it was very urban, mainly concrete and tar, and the only grassy area was the fringe around the TB clinic across the road.

‘It was a busy area, so if my parents and grandmother were out working I was put in the care of our neighbour; if she was housecleaning I had to sit on a small spot on the front porch and not move. There was a local gangster on the street corner 30 metres away who made sure I wouldn’t wander.’

Gangsters were locals who belonged to territorial gangs and dealt mainly with illicit drugs and alcohol. They rarely troubled civilians, but were strict about who could cross into their territory.

‘Sometimes gangsters would use us kids to help make a stack of bricks they could use against other gangs crossing the line.’

Destroying homes in District 6 – ‘The regime didn’t like the fact that District 6 was a bit of a melting pot, what they called a “grey area” … ‘ (Photo: courtesy of Creative Commons, photographer unknown)

In 1970 the government forcibly moved Clinton and his family to Penlyn Estate, a district set aside for coloured people in an area called Cape Flats.

‘The apartheid regime didn’t like the fact that District 6 was a bit of a melting pot, what they called a “grey area”, where coloured, Indian and black South Africans mixed freely and made families together. Keeping the different groups apart made us easier to control.

‘On the day we ordered to leave, government workers came about midmorning and piled our stuff into the back of a truck with a tarpaulin over it. The rest of us piled into our uncle’s old Hillman and drove off as the neighbours watched.

‘Most of District 6 was emptied pretty quickly, but some people hung on to the outskirts; it took a long time to clear out the whole area.’

Clinton admits the name Penlyn Estate sounds wonderful, but when they arrived the streets were still all gravel.

‘In the months before we moved, my dad took me there every few weeks and we’d stop by an empty field and stand there for a bit. But slowly a house was built on the land, and all the plots nearby. It was like a giant Meccano set.’

Clinton recalls that after moving in he and other children used to play on the sites still going up, despite warnings from parents to stay away from them.

‘There were small brass rings on the light switch fittings I used to put on my fingers; sometimes they’d get stuck and I had to run to my grandmother to help me get it off. So of course she’d know I’d been playing where I wasn’t supposed to go.’

He also remembers the area was pretty wild at first. They were robbed a few times.

‘The estate bordered on a really dodgy area called Hanover Park, an area with high unemployment and rife with gangsters. It was another coloured area, but poorer. Much of the housing was what the regime called “sub-economic”: flats and apartments.

‘I was personally threatened a couple of times. Once when some friends and I were crossing the canal that ran through the middle of our estate on the way to football, with our soccer boots hanging around our necks by their laces, an older guy appeared and demanded money. We told him we didn’t have any so he told us to hand over our football boots. One of my friends, Bones – a small kid who never stood back from a fight, hit the guy with his boots instead.

‘Another time someone wanted a friend’s new tennis outfit. We threw rocks at him until he drew a knife and then we ran away.’

Clinton says the policing was not very good in coloured areas.

‘Just like today, really, it’s the wealthier areas that get the most patrols and the most police stations instead of the areas that really needed them.

‘But the dads at Penlyn Estate got together and arranged a duty roster to keep residents safe. They were factory workers and had grown up rough. They kept the estate safe from when residents returned from work and through the night until residents left for work the next day. They worked in three shifts over 12 hours. When someone was caught stealing they might be beaten up in the process of being apprehended. Then the police were called to take them away.

‘After a year Penlyn Estate was known for not taking any crap. Houses and cars were no longer broken into.’

Clinton loved growing up in Penlyn Estate.

Cape Flats, which includes Penlyn Estate. ‘ … the area was pretty wild at first.’ (Photo: courtesy of Creative Commons, photographer unknown)

‘I didn’t know any better. Under apartheid communities were separated from each other by 4-lane highways, railway lines, industrial estates and barbed wire.’

Penlyn Estate was a coloured area.

‘We had our own schools and clinics. Even the ambulance to hospital had to be one designated for coloureds; if there wasn’t one available you might have to wait for three or four hours.’

#

Clinton remembers it wasn’t until he was about 13 years old that he became aware that things were different elsewhere.

‘Our next door neighbour was a student activist with a massive Afro. He was a well-known DJ, and known to the security police. One day he rushed into our house and asked my mum to cut his hair.

‘While his hair was being cut he asked me to rush next door and find the black bags filled with paper under his bed. “Dig a hole in my back yard and throw in the bags.”

‘I did as he asked, but looked at some of the papers. They were Roneo documents, banned pamphlets about the African National Congress in exile, for example. I became more aware about what it all meant after talking to my mum about it afterwards.

‘It was also about this time, when I was starting middle school, that people started burning tyres in the middle of the street, and we could hear shots in the distance. Police were always driving through the neighbourhood.’

Clinton says the locals burned tyres to attract the police so they could have an altercation.

‘People were getting a bit bolshie. They wanted to show they controlled their own lives in their own space. The actions weren’t organised or strategic as they later became in the 1980s when the plan was to help make the country ungovernable by stopping economic traffic. In the 1970s it was sporadic and unplanned.’

Clinton recalls the African National Congress later claiming they were there to give structure to the demonstrations, but in fact it was just sporadic action by locals.

He became more political in 1980, at the age of 15. ‘During the 1970s I was on the sideline, but what was happening all around me inculcated me with what needed to be done in the future.

‘I went to Harold Cressey High School, situated opposite Cape Town’s oldest prison and just up the street from the parliament. You had to pass an entrance exam to get into it; there was a long waiting list.’

One of his teachers was Mr Farrel. ‘He was a great person, very down to earth. He taught geography, English and social studies, and when he talked about the world he took you there with him.

‘He was held in high esteem as a man of great integrity. As well, he was a cricket umpire who umpired all of Cape Town’s top games.

‘He was one of those responsible for starting a teachers organisation. It wasn’t an official trade union – the regime kept strict control over the creation and running of “official” unions – but more of an intellectual organisation. Meetings were used to discuss the politics of the time. Many members ended up being barred as teachers and many belonged to the Unity Movement, which unfortunately never had the mass following of the African National Congress or Pan-African Congress. It did end up being in South Africa’s first open election in 1994 as the New Unity Movement.’

Clinton says his political wakening was due partly to his teachers, who often spoke about politics and society, and why it was structured the way it was.

‘It was so sad, but Mr Farrel ended up managing a restaurant.’

Clinton stresses his mother was important in his political awakening. ‘She was almost a Trotskyist and surreptitiously used to leave political pamphlets and writings on my desk. Over time I took on my mum’s political leanings.

‘She ran monthly meetings in the lounge room that were attended by prominent politicians and community leaders such as school principals; I would listen in while doing my homework. I gained a lot of political insight from what was said at those meetings.’

Clinton says he became more political in his last two years at school, boycotting classes and entering debates and discussions with other students from his school as well as others.

‘We’d talk about how to get things done despite obstacles such as principals collaborating with the regime or teachers preventing students from leaving classes to attend meetings.

‘The police would raid the school when there was any demonstration or boycott. They used tear gas and dogs because our school was in the city and they didn’t want trouble spilling out onto the streets. The police often reacted violently, and although they were often of mixed colour, it was white officers, usually speaking Afrikaans, on the megaphones delivering the ultimatum, threatening the use of tear gas or rubber bullets and even live rounds. As far as the apartheid regime was concerned it was open season on anyone in the way, students or teachers.’

#

Clinton says he was not raised with a coloured identity.

‘I was raised just as Clinton, although I understood myself not to be white when I was in other communities. The apartheid regime did a great job of dividing and conquering non-white communities – just like Donald Trump did in the US when he was president. But a coloured identity is something that really only developed after 1994, to some extent filtering down from the earlier black empowerment movement. Some coloured people are still struggling with the idea of identity, still driving the bus, but “coloured” culture is probably the big driver today, expressed in everything from popular music to slogans on T-shirts.

‘There are serious divisions among non-whites in parts of South Africa, if not so much in Cape Town. For example, Penlyn Estate was right next to an Indian designated section called Rylands, an Indian district. We went to school, to church and played sport with Indian South Africans; the division was very porous.

‘But Cape Town was regarded as a preferred coloured employment area, and we were sometimes seen as Uncle Toms. This was aggravated by the apartheid regime’s creation of the Tricameral Parliament in the 1970s, which allowed political parties for white, coloured and Indian South Africans, but not for black South Africans. This is an example of the regime producing a government that excluded blacks and divided the coloured people between Indian and others.’

Clinton’s father, Reggie, was designated coloured. ‘I’m not certain what his ancestry was: some Javanese, Filipino … his great-grandfather was German.  There’s no paperwork to find out these things; births and deaths weren’t registered back then. I’ve seen a photograph of my great-grandfather, and it shows a tall, light-skinned man with a Schwarzenegger hairdo. His dad was so light-skinned he could get into a whites-only queue at a Cape Town fish shop by faking a British accent.’

He laughs when he remembers he once attempted pulling the same trick once. ‘I tried getting cold beer at a place in Knysna by faking a cockney accent. We got the cold beer, but I didn’t fool anyone.’

Reggie was a freehand cutter at a leather factory, specialising in exotic skins such as elephant and crocodile hide to make bags and other luggage.

‘But that job ended when he lost his cool with a young administrator straight from the parent company in Germany who was telling Reggie and others their productivity was too low. My dad asked for the ledger the administrator was quoting from and smacked him in the head with it, then walked out. After that he worked at a spray-painting company.’

Clinton’s mum, Rosie, was at least part-Khoisan.

‘It wasn’t until the 1990s that anyone celebrated their ancestry. Being Khoisan to some degree could be a shameful thing. Being called a “Bushman” was the equivalent of being called “nigger”.’

Besides being a teacher she supplemented the family income with hairdressing and needle work, making things like wedding dresses.’

When he was a child, Clinton didn’t feel that apartheid was particularly repressive.

‘The first time I was made to feel powerless I was about 14 years old. I was on a train to school when some white boys threw dirty water over me and my friends. One of those friends retaliated the next day by slapping one of the white boys across the side of the head with a T-square. When we got off the train we were accosted by one of the white passengers. It really caused us to think of ourselves as different, and was the first time where I was involved in an altercation where race was the issue.’

Clinton says he always moved in a coloured area and so felt cocooned. ‘There were subtle reminders of apartheid, like which beach I could go to, but I became more aware of the whole situation as I got older.’

Clinton remembers he became very serious about apartheid in high school. ‘I was a very serious young man. With the example set by others in what we called ‘The Struggle’  – family and friends – I felt the need to help overthrow apartheid, that had a role to play as well as a student organiser and activist.

‘Not all my friends in high school felt the same way and I sometimes felt disjointed from them. It wasn’t until later that I realised how much I’d missed out on, but a “normal” teenage life was very difficult because of my activism.’

By the mid-1980s the apartheid regime was under such great internal and external pressure they extended an olive branch by entering into discussions with the ANC.

Clinton went straight to university after school.

‘I got a bursary to the University of Cape Town to study geography and anthropology – Mr Farrell’s influence! – with the intent of becoming a teacher. I became interested in other subjects like environmental studies, but the bursary proved to be a two-edged sword: it paid for my university fees, but restricted what subjects I could do.

‘I didn’t realise how cornered the regime felt until one day while playing cards at  uni, some friends and I made up a political party called the South African Liberation Front to “heal the wounds of the people”. It was done as a kind of Monty Python joke – Salf was the name of a medical ointment at the time. But the next day someone who’d been at our table sprayed the name and the credo in the library elevator, and the police went ape, pulling people into “interviews”.’

University of Cape Town (Photo: courtesy of Creative Commons, photographer unknown)

Clinton learned good manners from his gran, Gussie, who came from a small agricultural town in the Karoo called Ladysmith to take up domestic work in Cape Town.

‘Sometimes I’d go with her to visit Ladysmith. It was a totally different world. No grass anywhere, just gravel. Everyone there played Rugby instead of soccer. As young kids do, I spent a lot of time looking for scorpions and snakes, and I still fondly remember waking up to the smell of bread freshly baked in a woodfired oven.

‘Gussie instilled in me a good work ethic, and taught me the importance of introspection, about thinking before you speak or act. She said people will know in the first minute they meet you by your manners. She often used my uncle as an example of someone with good manners; his nickname was Dennis the Manners.

‘Dennis will strike up a conversation with anyone. He emigrated to Australia and taught art in schools in Kiama, New South Wales. He also helped establish the Kiama Jazz and Blues Festival.

‘From my mum I learned to be serious about work and about politics, and the value of reading. In fact, one of our neighbours, Mrs Kaylor, used to throw the neighbourhood kids into the back of her old Ford Cortina station wagon every weekend and drove us to the library so we could get three new books out to read. Her little effort made a big difference to us.

‘I also got my love of hiking from my mother.

‘From my dad I learned to love sport. He was sternly protective, and I inherited some of that. I also got my love of music from him, especially jazz. I remember when we were still living in District 6, going inside the house when it got dark and the first thing I’d hear would be jazz music coming from the turntable in the loungeroom and finding my dad by the glowing ember at the end of his cigarette.’

#

In 2021, Clinton says he feels he is South African, but hard done by. ‘The leadership has sold out by looking after themselves. There is a gulf between the wealthy and everybody else, something created post-apartheid. You can see it now during the current pandemic. We should have had better structures in place to better help those in poverty.

‘We were a country willing to stand up to lose its chains but is now being shackled again. No one’s willing to stand up and say ‘No!’ – this is not right. We allow it to happen. The faces of the new regime we recognise as coming from our community.’

Clinton thinks the Truth and Reconciliation Commission that followed majority rule might have prevented a civil war from happening.

‘There were forces at work who wanted to destabilise the government, to prove that majority rule could not work. But I believe the TRC stopped short of delivering real justice. Many members of the apartheid regime’s police and security police got away with murder and working well beyond the limits of the law.

‘A great deal was swept under the carpet by the TRC, and was proof to some that you could get away with a great deal and not be punished for it. Many of those in power now are as corrupt as those in power during apartheid. The TRC should have established a better precedent.’

Clinton thinks that South Africa needs a change in political will.

‘We need to step forward. The current pandemic, for example, has highlighted the fact that some in government are still trying to line their own pockets despite the suffering of the people.

‘If the pandemic doesn’t change things, I don’t know what will.’