20 September 2015: Putting Earth in its place

This is magical. Go watch it.


20 August 2015: Shine on Pluto


Pluto as seen by New Horizons. Image credit: NASA/JHUAPL/SwRI

AJ and I ducked out of the house on the night of August 11 to have a quick wine or two at King O’Malley’s pub in the city. When we got there we discovered the place had been invaded by Science in the Pub, and the two of us spent a pleasant hour drinking white wine, eating free food, and watching a slide show about the New Horizons mission to Pluto.

What’s more, it was a presentation hosted by John Berry, the American ambassador to Australia, and featured Nobel prize winner Brian Schmidt from the ANU, science communicator and astrophysicist Alan Duffy from Swinburne University of Technology, and Glen Nagle, Education and Outreach Manager at Canberra’s Deep Space Communication Complex at Tidbinbilla.

It was a pretty crowded affair and the screen was sometimes obscured by jostling customers, excited science addicts and through-traffic, but the mood was positive and the atmosphere … well … sciencey. (If this isn’t a word already, I bag naming rights.)

What follows are some of the amazing facts we learned about the New Horizons mission and Pluto, plus a few extra tidbits.

The mission was launched on 19 January 2006, when Pluto was still classified as a planet. Eight months later it was demoted to a dwarf planet. Furthermore, in 2006 only three moons had been identified orbiting Pluto. Before the probe reached its destination, we knew of five moons.

The probe’s closest approach to Pluto occurred nearly nine months after launch, on 14 July 2015, and after a journey of approximately 7.5 billion kilometres. Disappointingly, New Horizons was 7.5 seconds late for its appointment.

Still, not too bad when you consider that to travel the same distance travelling at a highway speed of 100 kph, it would take you around 8,560 years. In other words, to arrive in 2015 you would have had to start driving about the same time the world’s first city walls were being built around Jericho.

Shots of Pluto’s night side were made possible because of reflected sunlight from Pluto’s largest moon, Charon.

Pluto’s atmosphere expands as its eccentric orbit brings it closer to the sun, and then freezes when Pluto recedes from the sun. Since its last closest approach to the sun in the 1990s, Pluto’s atmosphere has halved. This was confirmed by a radio signal sent from Earth to New Horizons through the atmosphere when the probe reached the other side of Pluto. The signal had to hit a piece of equipment about the size of a credit card, and enabled scientists to measure the signal’s radio occultation.

Scientists were surprised to discover that ultraviolet light broke up some of the methane in Pluto’s atmosphere create more complex hydrocarbons such as ethylene and acetylene. They were even more surprised to learn that about 50% of this UV comes not from our sun, but from other stars.

Pretty exciting stuff for a dwarf planet.

All in all, an excellent night at the pub.