04 September 2015: Neither one thing nor the other

P. myojinensis

P. myojinensis. The blue structure is the nucleus, the red structures the endosymbionts.

A remarkable creature discovered in the ocean southeast of Japan – that doesn’t quite seem to belong to any of the three known domains – may provide evidence of how complex multicellular life evolved on Earth.

In 2010, a scientific expedition to the Myojin Knoll, about 35 kilometres southeast of the Japanese island of Aogashima, collected biological samples from a hydrothermal vent more than 1,200 metres below the surface.

The samples were frozen and then embedded in epoxy resin; the resin was then prepared for study by being sliced into ultrathin sections.

That’s when the researchers discovered they had collected one truly remarkable specimen, a single-celled organism that lays somewhere between prokaryotes, organisms like bacteria and archaea, and eukaryotes, the basis of complex organisms such as fungi, plants and … well … us.

The main differences between prokaryotes and eukaryotes are that the former do not have a nucleus surrounded by a membrane, or any membrane-bound organelles such as mitochondria or chloroplasts.

As described in the journal Microscopy, the cell, dubbed Parakaryon myojinensis, was discovered on one of the bristles of a type of Polychaete called a scale worm. It was 10 micrometres long and three wide, much larger than most bacteria. Inside the cell the researchers discovered a nucleus with a membrane. As well, they discovered three endosymbionts, organisms that live symbiotically inside another, also surrounded by membranes. Obviously, then, the cell was not a prokaryote.

However, the nucleus of P. myojinensis was surrounded by a single membrane and consisted of DNA fibres, whereas a nucleus in a eukaryote cell has a double membrane and consists of chromosomes.

The endosymbionts also had only a single membrane. Mitochondria in eukaryotes, like the nucleus, have a double cell wall. As well, the endosymbionts closely resembled bacteria rather than mitochondria.

This last point is what makes the discovery of P. myojinensis so important.

There are two major theories about how eukaryotes evolved. The autogenesis theory proposes that a eukaryote’s structures developed from primitive prokaryotic features. The symbiogenesis theory – first properly described by Russian Konstantin Mereschkowski in 1910 and subsequently advanced by Lynn Margulis in 1967 – proposes that eukaryotes evolved from a symbiotic relationship after a bacteria was absorbed by larger achaean, eventually becoming an integral and working part of the cell.

P. myojinensis seems to be an organism that has incorporated endosymbionts into its structure but not yet developed the full range of eukaryotic functions.

As the authors of the paper suggest, “ … it may even be a conservative descendant of the transitional lineage between prokaryotes and eukaryotes.”

For a fuller description of the possible implications of the discovery, read this article on ABC online by British scientist Nick Lane, whose latest book The Vital Question: Why is life the way it is?, is a rewarding and thought-provoking read.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s